Although L-type voltage-dependent calcium channels (VDCCs) have been reported to display different even contrary actions on cognitive functions and long-term potentiation (LTP) formation, there is little information regarding the role of L-type VDCCs in behavioral LTP, a learning-induced LTP model, in the intact brain of freely behaving animals. Here we investigated the effects of verapamil, a non-selective blocker of L-type VDCCs, on behavioral LTP and cognitive functions. Population spikes (PS) were recorded by using electrophysiological methods to examine the role of verapamil in behavioral LTP in the hippocampal dentate gyrus (DG) region. Y-maze assay was used to evaluate the effects of verapamil on learning and memory. Electron microscope was used to observe the changes on synaptic ultrastructural morphology in hippocampal DG area. We found that intrahippocampal verapamil treatments had no significant changes on the PS amplitude during a 90min recordings period. However, intrahippocampal applications of verapamil, including pre- or post-training, reduced behavioral LTP magnitude and memory retention but did not prevent the induction of behavioral LTP and the acquisition of learning. The saline group with behaving trainings showed obvious increases in the number of smile synapses, the length of active zones and the thickness of postsynaptic density as compared to the baseline group, but verapamil with pre-training treatment almost returned these changes to the baseline levels except for the synaptic interface curvature. In conclusion, our results suggest that L-type VDCCs may only contribute to the magnitude of behavioral LTP and the memory maintenance with an activity-independent relationship. L-type VDCCs may be critical to new information long-term storage rather than acquisition in hippocampus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nlm.2017.08.011 | DOI Listing |
Genes (Basel)
December 2024
Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Old Aberdeen AB24 3UE, UK.
Background/objectives: A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control.
Methods: We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level.
J Phys Chem Lett
January 2025
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.
View Article and Find Full Text PDFPain
January 2025
Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan.
The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
January 2025
Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile.
Postoperative delirium (POD), an acute cognitive dysfunction linked to morbidity and mortality, is characterized by memory impairments and disturbances in consciousness, particularly in patients aged 65 and older. Neuroinflammation and NAD+ imbalance are key mechanisms behind POD, leading to synaptic and cognitive deterioration. However, how surgery contributes to POD and neuroinflammation remains unclear, and effective treatments are lacking.
View Article and Find Full Text PDFNature
January 2025
Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
The zeta inhibitory peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP) when administered to mice. However, mice lacking its putative target, protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making the mechanism of ZIP unclear. Here we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!