Aeromonas hydrophila is the causative agent of bacterial septicemia that is frequently observed in grass carp, Ctenopharyngodon idellus. In this study, we evaluated the biological parameters and immune enzymes in the liver of grass carp following A. hydrophila infection and quantified the alterations in liver histology using a semi-quantitative system. For the biological parameters, we found that the liver somatic index (LSI) was more sensitive than Fulton's condition factor (CF) and was significantly decreased at three days post-injection (DPI). At the immune enzyme level, the level of peroxidase (POD) in the liver significantly increased at 1 and 3 DPI. The activity of alkaline phosphatase (ALP) significantly increased at 3 DPI. Similarly, acid phosphatase (ACP) activity significantly increased at 1, 3, and 5 DPI. Histologically, the results indicated that the liver index at 3, 5, and 7 DPI was significantly higher than that of control groups. The regressive alterations as the highly variable reactions patterns and its index at 5 DPI was significantly higher than that of 1, 21 DPI, and the control groups. Based on our results, we suggest that grass carp resist A. hydrophila infection via an innate immune mechanism in the liver. The findings of this study will help elucidate the underlying mechanisms of resistance to A. hydrophila infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2017.08.039 | DOI Listing |
Front Immunol
January 2025
Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.
Food Chem X
January 2025
School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
This study aimed to explore the effects of different brining times on the sensory, physicochemical properties, and volatile organic compounds (VOCs) of marinated grass carp (MGC). The results showed that different brining time changed the sensory quality, color and texture. The moisture content increased significantly with the extension of brining time, while the salt content, protein content, thiobarbituric acid reactive substances (TBARS), and total volatile basic‑nitrogen (TVB-N) decreased ( 0.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
The prevalence of heatwave and hypoxia events and their devastating impacts on aquatic ecosystems and fishery resources reinforces the priority of research to address the resilience and adaption mechanisms to these two stressors in important fish species. However, our understanding of the development of cross-tolerance of these two stressors in fish still limited. Here, we investigated the impacts of prior heatwave exposure on hypoxia tolerance and the underlying mechanisms in silver carp (Hypophthalmichthys molitrix), a species of considerable ecological and commercial importance.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China. Electronic address:
Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China. Electronic address:
The implementation of innovative techniques to achieve low-salt strategies in cured products is a critical issue faced by the food industry. This study aimed to investigate the impact of ultrasound treatment on the quality of the low-salt air-dried fish. The results showed that compared to traditional liquid curing, ultrasound-assisted curing significantly increased the NaCl transfer rate, improved tenderness, and improved water retention and in vitro digestibility (p < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!