A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monitoring structural features, biocompatibility and biological efficacy of gamma-irradiated methotrexate-loaded spray-dried microparticles. | LitMetric

In this study, biodegradable and biocompatible gamma irradiated poly-(dl-lactide-co-glycolide) (PLGA) spray-dried microparticles were prepared aiming to improve the efficacy of methotrexate (MTX). The experimental design included three formulations of microparticles containing distinct drug amount (9%, 18%, and 27% w/w) and three distinct gamma irradiation dose (15kGy, 25kGy, and 30kGy). The physicochemical and drug release properties of the microparticles supported their biocompatibility and biological efficacy studies in different cell lines. The irradiation induced slight changes in the spherical shape of the microparticles and the formation of free radicals was dependent on the drug loading. However, the amorphous character, particle size, drug loading, and drug release rate of the microparticles were preserved. The drug release data from all microparticles formulation were evaluated by using four drug kinetic models and by comparison of their similarity factor (f). The gamma irradiation did not induce changes in the biocompatibility of PLGA microparticles and in the biological activity of the MTX-loaded microparticles. Finally, the spray-dried MTX-loaded PLGA microparticles enhanced the efficacy of the drug in the human cervical cancer cells (SiHa cell line). This study demonstrated the feasibility of the gamma irradiated spray dried PLGA microparticles for prolonged release of MTX, supporting a promising antitumor-drug delivery system for parenteral (subcutaneous) or pulmonary use.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2017.06.013DOI Listing

Publication Analysis

Top Keywords

drug release
12
plga microparticles
12
microparticles
11
biocompatibility biological
8
biological efficacy
8
spray-dried microparticles
8
gamma irradiated
8
drug
8
gamma irradiation
8
drug loading
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!