A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Construction of ICG encapsulated WO@MSN as a fluorescence carrier for real-time tracked photothermal therapy. | LitMetric

Construction of ICG encapsulated WO@MSN as a fluorescence carrier for real-time tracked photothermal therapy.

Mater Sci Eng C Mater Biol Appl

School of Electronics and Information Engineering, Tianjin Polytechnic University, 399 Binshui West Street, Xiqing District, Tianjin 300387, PR China. Electronic address:

Published: November 2017

Photothermal therapy (PTT) has drawn tremendous attention because of its high therapeutic efficiency in targeting cells while minimizing the damage to normal tissues and organs. Tungsten oxide (WO, WO) plays a pivotal role in PTT development and its use in PTT systems has been extensively studied. However, it is difficult to control morphology of WO through conventional hydrothermal method. Which make its related researches have been limited up to now. In this study, we describe the construction and effects on tumor of a novel nanoplatform based on WO and indocyanine green (ICG) loaded in mesoporous silica nanoparticles (MSN) for dual-modal PTT and near-infrared imaging. (WO+ICG)@MSN could efficiently control WO shape without the need of surface modification due to its water-soluble of MSN. (WO+ICG)@MSN produced a PTT synergistic effect under irradiation of a single 808nm near-infrared (NIR) laser. Notably, an enhanced lethal effect of the 808nm laser triggering dual-modal therapy on B16 tumor cells was observed. The in vivo animal experiments showed that (WO+ICG)@MSN induced an effective solid tumor reduction under 808nm NIR light irradiation, revealing the potential of these nanocomposites as a NIR-mediated dual-modal therapeutic platform for cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2017.05.131DOI Listing

Publication Analysis

Top Keywords

photothermal therapy
8
ptt
5
construction icg
4
icg encapsulated
4
encapsulated wo@msn
4
wo@msn fluorescence
4
fluorescence carrier
4
carrier real-time
4
real-time tracked
4
tracked photothermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!