A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contrasting cellular damage after Blue-IRIS and Femto-LASIK in cat cornea. | LitMetric

Contrasting cellular damage after Blue-IRIS and Femto-LASIK in cat cornea.

Exp Eye Res

Center for Visual Science, University of Rochester, Rochester, NY 14627, USA; Flaum Eye Institute, University of Rochester, Rochester, NY 14627, USA. Electronic address:

Published: December 2017

Blue-intra-tissue refractive index shaping (Blue-IRIS) is a new approach to laser refractive correction of optical aberrations in the eye, which alters the refractive index of the cornea rather than changing its shape. Before it can be implemented in humans, it is critical to establish whether and to what extent, Blue-IRIS damages the cornea. Here, we contrasted the impact of -1.5 D cylinder refractive corrections inscribed using either Blue-IRIS or femtosecond laser in-situ keratomileusis (femto-LASIK) on corneal cell viability. Blue-IRIS was used to write a -1.5 D cylinder gradient index (GRIN) lens over a 2.5 mm by 2.5 mm area into the mid-stromal region of the cornea in six freshly-enucleated feline eyes. The same correction (-1.5 D cylinder) was inscribed into another four cat eyes using femto-LASIK. Six hours later, all corneas were processed for histology and stained for terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) and p-γ-H2AX to label damaged cells. In Blue-IRIS-treated corneas, no tissue was removed and TUNEL-stained cells were confined to the laser focal zone in the stroma. In femto-LASIK, photoablation removed 14 μm of anterior stroma, but in addition, TUNEL-positive cells clustered across the femto-flap, the epithelium at the flap edges and the stroma below the ablation zone. Keratocytes positive for p-γ-H2AX were seen adjacent to all Blue-IRIS focal zones, but were completely absent from femto-LASIK-treated corneas. Unlike femto-LASIK, Blue-IRIS attains refractive correction in the cornea without tissue removal and only causes minimal, localized keratocyte death within the laser focal zones. In addition, Blue-IRIS induced DNA modifications associated with phosphorylation of γ-H2AX in keratocytes adjacent to the laser focal zones. We posit that this p-γ-H2AX response is related to alterations in chromatin structure caused by localized changes in osmolarity, a possible mechanism for the induced refractive index changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705398PMC
http://dx.doi.org/10.1016/j.exer.2017.08.018DOI Listing

Publication Analysis

Top Keywords

laser focal
12
focal zones
12
blue-iris
8
refractive correction
8
refractive
6
femto-lasik
5
cornea
5
laser
5
contrasting cellular
4
cellular damage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!