Amblyomma ticks and future climate: Range contraction due to climate warming.

Acta Trop

Laboratório de Parasitologia Médica e Biologia de Vetores da Faculdade de Medicina da Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, CEP: 70910-900, Brasília, Brazil.

Published: December 2017

Ticks of the Amblyomma cajennense species complex are important vectors of spotted fever in Latin America. Environmental conditions determine the geographic distribution of ticks, such that climate change could influence the distribution of tick-borne diseases. This study aimed to analyze the potential geographic distribution of A. cajennense complex ticks in a Brazil region under present-day and future climate models, assuming dispersal limitations and non-evolutionary adaptation of these tick populations to climate warming. Records of A. cajennense sensu stricto (s.s.) and Amblyomma sculptum were analyzed. Niche models were calibrated using Maxent considering climate variables for 1950-2000 and projecting models to conditions anticipated for 2050 and 2070 under two models of future climate (CCSM4 and HadGEM2-AO). Broad suitable areas for A. cajennense s.s. and A. sculptum were found in present-day climate models, but suitability was reduced when models were projected to future conditions. Our exploration of future climates showed that broad areas had novel climates not existing currently in the study region, including novel extremely high temperatures. Indeed, predicted suitability in these novel conditions would lead to biologically unrealistic results and therefore incorrect forecasts of future tick-distribution. Previous studies anticipating expansions of vectors populations due to climate change should be considered with caution as they assume that model extrapolation anticipates that species would evolve rapidly for adaptation to novel climatic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2017.07.033DOI Listing

Publication Analysis

Top Keywords

future climate
12
climate
9
climate warming
8
geographic distribution
8
climate change
8
climate models
8
populations climate
8
future
6
models
6
conditions
5

Similar Publications

The concepts of planetary boundaries are influential in the sustainability literature and assist in delineating the 'safe operating spaces' beyond which critical Earth system processes could collapse. Moving away from our current trajectory towards 'hothouse Earth' will require knowledge of how Earth systems have varied throughout the Holocene, and whether and how far we have deviated from past ranges of variability. Such information can inform decisions about where change could be resisted, accepted or where adaptation is inevitable.

View Article and Find Full Text PDF

One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs.

View Article and Find Full Text PDF

Background: Snakebite is a priority neglected tropical disease, but incidence data are lacking; current estimates rely upon incomplete health facility reports or ad hoc surveys. Spatial analysis methods harness statistical associations between case incidence and spatially varying factors to improve estimates. This systematic review aimed to identify variables associated with snakebite risk in spatial and temporal analyses for inclusion in geospatial studies to improve risk estimation accuracy.

View Article and Find Full Text PDF

With climate and land use changes, tick-borne pathogens are expected to become more widely distributed in Canada. Pathogen spread and transmission in this region is modulated by changes in the abundance and distribution of tick and host populations. Here, we assessed the relationships between pathogens detected in and mammal hosts at sites of different levels of disease risk using data from summer field surveys in Ontario and Quebec, Canada.

View Article and Find Full Text PDF

The species, valued for their pharmaceutical, ornamental, and economic importance, exhibit notable rarity and endemism in the Karst areas of the Yunnan-Kweichow Plateau in China. These species face significant threats from habitat loss and fragmentation, leading to a decline in biodiversity. To mitigate these threats, the Maxent algorithm was employed to analyze current and future distribution patterns, with a particular focus on the influence of climate variables in predicting potential distribution shifts and assessing extinction risks under the optimistic SSP1-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!