A semiparametric regression cure model for doubly censored data.

Lifetime Data Anal

Center for Applied Statistical Research, School of Mathematics, Jilin University, Changchun, 130012, China.

Published: July 2018

This paper discusses regression analysis of doubly censored failure time data when there may exist a cured subgroup. By doubly censored data, we mean that the failure time of interest denotes the elapsed time between two related events and the observations on both event times can suffer censoring (Sun in The statistical analysis of interval-censored failure time data. Springer, New York, 2006). One typical example of such data is given by an acquired immune deficiency syndrome cohort study. Although many methods have been developed for their analysis (De Gruttola and Lagakos in Biometrics 45:1-12, 1989; Sun et al. in Biometrics 55:909-914, 1999; 60:637-643, 2004; Pan in Biometrics 57:1245-1250, 2001), it does not seem to exist an established method for the situation with a cured subgroup. This paper discusses this later problem and presents a sieve approximation maximum likelihood approach. In addition, the asymptotic properties of the resulting estimators are established and an extensive simulation study indicates that the method seems to work well for practical situations. An application is also provided.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10985-017-9406-3DOI Listing

Publication Analysis

Top Keywords

doubly censored
12
failure time
12
censored data
8
paper discusses
8
time data
8
cured subgroup
8
data
5
semiparametric regression
4
regression cure
4
cure model
4

Similar Publications

Understanding the temporal relationship between key events in an individual's infection history is crucial for disease control. Delay data between events, such as infection and symptom onset times, is doubly censored because the exact time at which these key events occur is generally unknown. Current mathematical models for delay distributions are derived from heuristic justifications.

View Article and Find Full Text PDF

Doubly robust estimation under covariate-induced dependent left truncation.

Biometrika

September 2024

Department of Mathematics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.

In prevalent cohort studies with follow-up, the time-to-event outcome is subject to left truncation leading to selection bias. For estimation of the distribution of the time to event, conventional methods adjusting for left truncation tend to rely on the quasi-independence assumption that the truncation time and the event time are independent on the observed region. This assumption is violated when there is dependence between the truncation time and the event time, possibly induced by measured covariates.

View Article and Find Full Text PDF

Covariate-adjusted response adaptive (CARA) designs are effective in increasing the expected number of patients receiving superior treatment in an ongoing clinical trial, given a patient's covariate profile. There has recently been extensive research on CARA designs with parametric distributional assumptions on patient responses. However, the range of applications for such designs becomes limited in real clinical trials.

View Article and Find Full Text PDF

Interval sampling is widely used for collection of disease registry data, which typically report incident cases during a certain time period. Such sampling scheme induces doubly truncated data if the failure time can be observed exactly and doubly truncated and interval censored (DTIC) data if the failure time is known only to lie within an interval. In this article, we consider nonparametric estimation of the cumulative incidence functions (CIF) using doubly-truncated and interval-censored competing risks (DTIC-C) data obtained from interval sampling scheme.

View Article and Find Full Text PDF

This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval-censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval-censored (PIC) endpoints. DC responses involve either left-censoring or right-censoring alongside some exact failure time observations, while PIC responses are subject to interval-censoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!