A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Scaffolding Protein IQGAP1 Interacts with NLRC3 and Inhibits Type I IFN Production. | LitMetric

Sensing of cytosolic nucleotides is a critical initial step in the elaboration of type I IFN. One of several upstream receptors, cyclic GMP-AMP synthase, binds to cytosolic DNA and generates dicyclic nucleotides that act as secondary messengers. These secondary messengers bind directly to stimulator of IFN genes (STING). STING recruits TNFR-associated NF-κB kinase-binding kinase 1 which acts as a critical node that allows for efficient activation of IFN regulatory factors to drive the antiviral transcriptome. NLRC3 is a recently characterized nucleotide-binding domain, leucine-rich repeat containing protein (NLR) that negatively regulates the type I IFN pathway by inhibiting subcellular redistribution and effective signaling of STING, thus blunting the transcription of type I IFNs. NLRC3 is predominantly expressed in lymphoid and myeloid cells. IQGAP1 was identified as a putative interacting partner of NLRC3 through yeast two-hybrid screening. In this article, we show that IQGAP1 associates with NLRC3 and can disrupt the NLRC3-STING interaction in the cytosol of human epithelial cells. Furthermore, knockdown of IQGAP1 in THP1 and HeLa cells causes significantly more IFN-β production in response to cytosolic nucleic acids. This result phenocopies NLRC3-deficient macrophages and fibroblasts and short hairpin RNA knockdown of NLRC3 in THP1 cells. Our findings suggest that IQGAP1 is a novel regulator of type I IFN production, possibly via interacting with NLRC3 in human monocytic and epithelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714304PMC
http://dx.doi.org/10.4049/jimmunol.1601370DOI Listing

Publication Analysis

Top Keywords

type ifn
16
ifn production
8
secondary messengers
8
epithelial cells
8
nlrc3
7
ifn
6
iqgap1
5
type
5
cells
5
scaffolding protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!