Development of a wavy Stark velocity filter for studying interstellar chemistry.

Rev Sci Instrum

Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA.

Published: August 2017

Cold polar molecules are key to both the understanding of fundamental physics and the characterization of the chemical evolution of interstellar clouds. To facilitate such studies over a wide range of temperatures, we developed a new type of Stark velocity filter for changing the translational and rotational temperatures of velocity-selected polar molecules without changing the output beam position. The translational temperature of guided polar molecules can be significantly varied by exchanging the wavy deflection section with one having a different radius of the curvature and a different deflection angle. Combining in addition a temperature variable gas cell with the wavy Stark velocity filter enables to observe the translational and rotational temperature dependence of the reaction-rate constants of cold ion-polar molecule reactions over the interesting temperature range of 10-100 K.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4997721DOI Listing

Publication Analysis

Top Keywords

stark velocity
12
velocity filter
12
polar molecules
12
wavy stark
8
translational rotational
8
development wavy
4
filter studying
4
studying interstellar
4
interstellar chemistry
4
chemistry cold
4

Similar Publications

Velocity Scanning Tomography for Room-Temperature Quantum Simulation.

Phys Rev Lett

November 2024

Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China.

Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physical quantities. To overcome this obstacle, we implement a velocity scanning tomography technique to discern the responses of atoms with different velocities, allowing cold-atom spectroscopic resolution within room-temperature SLs.

View Article and Find Full Text PDF

Intestinal parasitic worms are widespread throughout the world, causing chronic infections in humans and animals. However, very little is known about the locomotion of the worms in the host gut. We studied the movement of naturally infecting mice, and used as an animal model for roundworm infections.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied the kinematic Sunyaev-Zel'dovich (kSZ) effect using data from two telescopes, the South Pole Telescope and Herschel-SPIRE, covering a large area in the sky.
  • They found a strong signal indicating that there is a trispectrum, which is a kind of pattern in the data, but it had contributions from other sources too, like cosmic microwave background lensing and foregrounds.
  • By analyzing the data, they couldn't find just the kSZ signal alone, but they set limits on how long the reionization period lasted in the early universe, which helps us understand its history better.
View Article and Find Full Text PDF

The motional Stark effect diagnostic for ITER.

Rev Sci Instrum

July 2024

Nova Photonics, Inc., 211 College Road East, Suite 103, Princeton, New Jersey 08540, USA.

An overview of the plans for the motional Stark effect (MSE) diagnostic installation on the International Thermonuclear Experimental Reactor (ITER) is presented. The MSE diagnostic uniquely provides spatially localized magnetic field measurements inside the plasma. These are used to constrain equilibrium reconstructions to determine q(r), the safety factor as a function of minor radius.

View Article and Find Full Text PDF

The striking appearance of wax 'tails'-posterior wax projections on planthopper nymphs-has captivated entomologists and naturalists alike. Despite their intriguing presence, the functional roles of these formations remain largely unexplored. This study leverages high-speed imaging to uncover the biomechanical implications of wax structures in the aerial dynamics of planthopper nymphs (Ricania sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!