Since betulin (Bet) and its acetylenic derivative, 28-O-propynoylbetulin (proBet) were shown to induce apoptosis in several cancer cell lines, we studied the mechanism of this process in human endometrial adenocarcinoma cells (EA). Previous studies suggested that this group of compounds affect prolidase activity (proline releasing enzyme from imidodipeptides) and collagen biosynthesis (proline utilizing process) providing substrate (proline) for proline oxidase (POX) dependent apoptosis. Here we provide evidence that Bet and proBet exhibit prolidase-inducing activity in EA cell line. However, in contrast to Bet, proBet inhibited collagen biosynthesis, increased intracellular proline concentration and induced apoptosis in EA cells, as detected by caspase-3, and -9 expressions and annexin V staining. Although POX expression was not affected by both compounds, the process of apoptosis was accompanied by increase in cytoplasmic level of proline. The mechanism for proBet-induced prolidase activity was found at the level of β1 integrin signaling. The inhibition of collagen biosynthesis was due to up-regulation of NF-κB p65, an inhibitor of collagen type I gene transcription. Although Bet and proBet induced expression of pro-apoptotic p53 in EA cells, the effect of proBet on the processes was much stronger. In contrast to proBet, Bet strongly induced expression of pro-survival factors, HIF-1α and VEGF. The data suggest that massive production of proline by proBet-dependent activation of prolidase and inhibition of proline utilization for collagen biosynthesis may represent mechanism for POX-dependent apoptosis in EA cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2017.08.104 | DOI Listing |
Tissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFPLoS One
January 2025
Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Background: Rheumatoid arthritis (RA) is a degenerative autoimmune disease, often managed through symptomatic treatment. The co-occurrence of the reported extra-articular comorbidities such as inflammatory bowel disease (IBD), and dementia may complicate the pathology of the disease as well as the treatment strategies. Therefore, in our study, we aim to elucidate the key genes, and regulatory elements implicated in the progression and association of these diseases, thereby highlighting the linked potential therapeutic targets.
View Article and Find Full Text PDFLaryngocutaneous fistula is one of the most important complications encountered after larynx surgery. Stem cell therapy is a promising treatment approach for the future, both without the need for surgical methods and by assisting surgical methods to close the fistula. 30 female Downey Sprague rats were divided into 5 separate groups and pharyngocutaneous fistula was created.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China.
Platelet-derived extracellular vesicles (PEVs) are rich in growth factors and have significant potential for facilitating tissue repair and regeneration. Therefore, we conducted this meta-analysis to assess the efficacy of PEVs in treating diabetic wounds. To assess the efficacy and safety of PEVs in treating diabetic wounds, we conducted a systematic review of several databases and performed a meta-analysis using a random effects model.
View Article and Find Full Text PDFElife
January 2025
Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!