Silk fibroin (SF) offers great opportunities in manufacturing biocompatible/partially biodegradable devices with environmental benignity and biomedical applications. To obtain active SF devices of next generation, this work is to demonstrate a new functionalization strategy of the mesoscopic functionalization for soft materials. Unlike the atomic functionalization of solid materials, the meso-functionalization is to incorporate meso-dopants, i.e., functional molecules or nanomaterials, quantum dots, into the mesoscopic networks of soft materials. In this work, wool keratin (WK) molecules were adopted as mediating molecules to incorporate gold nanoclusters (AuNCs), into the mesoscopic networks of SF. It follows from our analyses that the β-crystallites between WK and SF molecules establish the binding between WK@AuNCs and the SF networks. The incorporated WK@AuNCs are electron rich and serve as electronically charged nano particles to bridge the growth of Ag filaments in bio-degradable WK@AuNCs-SF memristors. The meso-functionalization can greatly enhance the performance of SF materials and endows them with new functionalities. This can be highlighted by biocompatible/partly degradable WK@AuNCs functionalized SF resistive random-access memories, having the enhanced resistive switching memory performance, and the unique synapse characteristics and the capability of synapse learning compared with neat SF devices, and of great importance in nonvolatile memory, analog circuits, and neuromorphic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201702390 | DOI Listing |
Nanoscale
January 2025
Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China.
Gold nanorods (AuNRs) have shown great potential as photothermal agents for cancer therapy. However, the biosafety of AuNRs ordinarily synthesized using a cationic ligand assistance procedure has always been a subject of controversy, which limits their application in tumor therapy. In this study, we propose a novel strategy to enhance the biocompatibility of AuNRs by constructing a biological coating derived from silk fibroin (SF) on their surface.
View Article and Find Full Text PDFRegen Biomater
November 2024
Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand.
Alveolar ridge loss presents difficulties for implant placement and stability. To address this, alveolar ridge preservation (ARP) is required to maintain bone and avoid the need for ridge augmentation using socket grafting. In this study, a scaffold for ARP was created by fabricating a 3D porous dense microfiber silk fibroin (mSF) embedded in poly(vinyl alcohol) (PVA), which mimics the osteoid template.
View Article and Find Full Text PDFInt J Pharm X
June 2025
State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China.
Systemic administration of methotrexate (MTX), widely regarded as one of the most effective treatments for psoriasis, poses significant challenges due to its high toxicity, limited solubility, and potential for adverse effects. Consequently, developing a topical form of MTX may offer a safer and more effective strategy for psoriasis management. Silk fibroin (SF), a protein-based biomacromolecule, has shown considerable promise as a nanocarrier for sustained and targeted drug delivery, owing to its exceptional physicochemical and biological properties.
View Article and Find Full Text PDFRecent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!