Primary Product Branching in the Photodissociation of Chloroacetaldehyde at 157 nm.

J Phys Chem A

The James Franck Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.

Published: September 2017

We used crossed laser-molecular beam scattering to study the primary photodissociation channels of chloroacetaldehyde (CHClCHO) at 157 nm. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence two other photodissociation channels: HCl photoelimination and C-C bond fission. This is the first direct evidence of the C-C bond fission channel in chloroacetaldehyde, and we found that it significantly competes with the C-Cl bond fission channel. We determined the total primary photodissociation branching fractions for C-Cl fission:HCl elimination:C-C fission to be 0.65:0.07:0.28. The branching between the primary channels suggests the presence of interesting excited state dynamics in chloroacetaldehyde. Some of the vinoxy radicals from C-Cl photofission and most of the ketene cofragments formed in HCl photoelimination have enough internal energy to undergo secondary dissociation. While our previous velocity map imaging study on the photodissociation of chloroacetaldehyde at 157 nm focused on the barrier for the unimolecular dissociation of vinoxy to H + ketene, this work shows that the HCl elimination channel contributed to the high kinetic energy portion of the m/z = 42 signal in that study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.7b05318DOI Listing

Publication Analysis

Top Keywords

bond fission
16
primary photodissociation
12
photodissociation chloroacetaldehyde
8
chloroacetaldehyde 157
8
photodissociation channels
8
c-cl bond
8
hcl photoelimination
8
c-c bond
8
fission channel
8
photodissociation
6

Similar Publications

Unveiling triclosan biodegradation: Novel metabolic pathways, genomic insights, and global environmental adaptability of Pseudomonas sp. strain W03.

J Hazard Mater

January 2025

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China. Electronic address:

The polychlorinated aromatic antimicrobial agent triclosan (TCS) is widely used to indiscriminately and rapidly kill microorganisms. The global use of TCS has led to widespread environmental contamination, posing significant threats to ecosystem and human health. Here we reported a newly isolated Pseudomonas sp.

View Article and Find Full Text PDF

Objective: This study aimed to identify structural changes in age-related curved hair (referred to as "YUGAMI" hair in Japanese) induced by cyclical extension using infrared (IR) spectroscopy coupled with chemometrics, such as multivariate curve resolution (MCR) and two-dimensional correlation spectroscopy (2DCOS).

Methods: The hair fibres were stretched at a strain level of 0.3-N, and this operation was counted as one cycle and was repeated 500 cycles.

View Article and Find Full Text PDF

The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event.

View Article and Find Full Text PDF

A Comparative Theoretical Study of the Atmospheric Chemistry of Dimethyl and Bis(trifluoromethyl) Sulfides.

J Phys Chem A

January 2025

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.

Dimethyl sulfide (CHSCH) is the largest natural source of atmospheric sulfur. Bis(trifluoromethyl) sulfides (CFSCF) are one of the perfluorinated thioethers with great interest as the new refrigerant fluid and dielectric replacement gas for the sake of environmental concern. In order to clarify the effect of fluorine substitution, degradation mechanisms and kinetics for the reactions of CHSCH and CFSCF with OH radicals in the atmosphere have been calculated comprehensively in a comparative manner using various high-level methods.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) play a major role in the chemistry of combustion, pyrolysis, and the interstellar medium. Production (or activation) of radical PAHs and propagation of their resulting reactions require efficient dehydrogenation, but the preferred method of hydrogen loss is not well understood. Unimolecular hydrogen ejection (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!