The concept of aromaticity in pincer ligands and complexes was discussed in order to provide insights into their metal-ligand cooperative activities. The aromatic PN(P) and dearomatized PN(P)* pincer ligands and the corresponding transition metal complexes were studied with the nucleus-independent chemical shift (NICS), anisotropy of the current (induced) density (ACID), isochemical shielding surfaces (ICSS), harmonic oscillator model of aromaticity (HOMA), MCBO, Shannon aromaticity, and natural bond order (NBO) analyses. The study on the model systems showed that for the dearomatized species the decrease of the NICS(1) value comes with the larger contribution of the aromatic zwitterionic mesomeric form. In all examples, the incorporation of the metal center into the pincer ligand decreases the NICS(1) values. The DFT calculations support the dearomatized pyridine ring in PNP* or PNN* ligand indeed being nonaromatic, in contrast to the PN(P)* ligand which has partial aromatic character due to the larger contribution of the zwitterionic resonance structure. The difference in aromaticity between the rings contributes to the thermodynamic balance of the metal ligand cooperative reactions, changing the energetics of the process when different dearomatized pincer ligands are used. This was further exemplified by aromaticity analysis of the heterolytic hydrogen cleavage reaction of ruthenium PNN complexes of Milstein and the PN of Huang, with similar geometries but distinctive thermodynamic preference.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b06305DOI Listing

Publication Analysis

Top Keywords

pincer ligands
12
metal-ligand cooperative
8
dearomatized pincer
8
larger contribution
8
dearomatized
5
pincer
5
aromaticity
5
cooperative reactivity
4
reactivity pseudo-dearomatized
4
pseudo-dearomatized pnp
4

Similar Publications

Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its Bu analogue 2,6-bis(5--butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)(MeCN)(PMePh)] 1-3 (1 ≤ ≤ 3).

View Article and Find Full Text PDF

Catalysis activity and chemoselectivity control with the ligand in Ru-H pincer complexes.

Dalton Trans

January 2025

Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA.

(PhPNP)Ru(H)(Cl)(CO) serves as a precatalyst to a variety of important catalytic transformations but most improvements have been restricted to the replacement of the CO ligand to the hydride or changing the Ph groups of the pincer for other aryl or alkyl groups. The ligand to the hydride is often another hydride and studies that utilize other ligands in catalysis are limited. In this work, we synthesized a series of [(PhPNP)Ru(H)(CO)(L)][BPh] complexes bearing isonitrile, PMe, or a N-heterocyclic ligand to the Ru-H.

View Article and Find Full Text PDF

Compounds featuring bonds between mercury and transition metals are of interest for their intriguing/ambiguous bonding and scarcely explored reactivities. We report herein the synthesis and reactivities of the new compound [(POCOP)Ni]2Hg, [Ni2Hg], featuring a trinuclear Ni-Hg-Ni core (POCOP = κP,κC,κP´-2,6-(i-Pr2PO)2C6H3). [Ni2Hg] reacts with CO2 to give the carbonate-bridged complex [Ni2CO3].

View Article and Find Full Text PDF

Herein, we report the isolation of pyridine moiety-functionalized SiNSi pincer-based bis-silylene ligand () and its reactivity toward various halide precursors (X = Br and I) of group 13 elements (M = Al, Ga, and In). This gave us straightforward access to the SiNSi pincer-coordinated group 13 cations (-). These complexes are duly characterized by single-crystal X-ray diffraction studies, multinuclear magnetic resonance spectroscopy (H, C, and Si), and high-resolution mass spectrometry techniques.

View Article and Find Full Text PDF

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!