It has been proposed that letters, as opposed to symbols, trigger specialized crowding processes, boosting identification of the first and last letters of words. This hypothesis is based on evidence that single-letter accuracy as a function of within-string position has a W shape (the classic serial position function [SPF] in psycholinguistics) whereas an inverted V shape is obtained when measured with symbols. Our main goal was to test the robustness of the latter result. Our hypothesis was that any letter/symbol difference might result from short-term visual memory processes (due to the partial report [PR] procedures used in SPF studies) rather than from crowding. We therefore removed the involvement of short-term memory by precueing target-item position and compared SPFs with precueing and postcueing. Perimetric complexity was stringently matched between letters and symbols. In postcueing conditions similar to previous studies, we did not reproduce the inverted V shape for symbols: Clear-cut W shapes were observed with an overall smaller accuracy for symbols compared to letters. This letter/symbol difference was dramatically reduced in precueing conditions in keeping with our prediction. Our results are not consistent with the claim that letter strings trigger specialized crowding processes. We argue that PR procedures are not fit to isolate crowding processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/17.11.2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!