Adsorption of CO on the FeO(001) Surface.

J Phys Chem B

Institute of Applied Physics, Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.

Published: January 2018

The interaction of CO with the FeO(001)-(√2 × √2)R45° surface was studied using temperature-programmed desorption (TPD), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS), the latter both under ultrahigh vacuum (UHV) conditions and in CO pressures up to 1 mbar. In general, the CO-FeO interaction is found to be weak. The strongest adsorption occurs at surface defects, leading to small TPD peaks at 115, 130, and 190 K. Desorption from the regular surface occurs in two distinct regimes. For coverages up to two CO molecules per (√2 × √2)R45° unit cell, the desorption maximum shows a large shift with increasing coverage, from initially 105 to 70 K. For coverages between 2 and 4 molecules per (√2 × √2)R45° unit cell, a much sharper desorption feature emerges at ∼65 K. Thermodynamic analysis of the TPD data suggests a phase transition from a dilute 2D gas into an ordered overlayer with CO molecules bound to surface Fe sites. XPS data acquired at 45 K in UHV are consistent with physisorption. Some carbon-containing species are observed in the near-ambient-pressure XPS experiments at room temperature but are attributed to contamination and/or reaction with CO with water from the residual gas. No evidence was found for surface reduction or carburization by CO molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b06349DOI Listing

Publication Analysis

Top Keywords

coverages molecules
8
molecules √2
8
√2 √2r45°
8
√2r45° unit
8
unit cell
8
surface
6
adsorption feo001
4
feo001 surface
4
surface interaction
4
interaction feo001-√2
4

Similar Publications

A force field is a critical component in molecular dynamics simulations for computational drug discovery. It must achieve high accuracy within the constraints of molecular mechanics' (MM) limited functional forms, which offers high computational efficiency. With the rapid expansion of synthetically accessible chemical space, traditional look-up table approaches face significant challenges.

View Article and Find Full Text PDF

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

DMSO-Assisted Control Enables Highly Efficient 2D/3D Hybrid Perovskite Solar Cells.

Small

January 2025

State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.

Building 2D/3D heterojunction is a promising approach to passivate surface defects and improve the stability of perovskite solar cells (PSCs). Developing effective methods to build high-quality 2D/3D heterojunction is in demand. The formation of 2D/3D heterojunction involves both the diffusion of 2D spacer molecules and phase transition from 3D to 2D structure.

View Article and Find Full Text PDF

Coverage bias in small molecule machine learning.

Nat Commun

January 2025

Chair for Bioinformatics, Institute for Computer Science, Friedrich Schiller University Jena, Jena, Germany.

Small molecule machine learning aims to predict chemical, biochemical, or biological properties from molecular structures, with applications such as toxicity prediction, ligand binding, and pharmacokinetics. A recent trend is developing end-to-end models that avoid explicit domain knowledge. These models assume no coverage bias in training and evaluation data, meaning the data are representative of the true distribution.

View Article and Find Full Text PDF

Unlocking Germanium Potential: Stabilization Strategies Through Wet Chemical Functionalization.

Materials (Basel)

December 2024

Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC-CNR, Via Corti, 20132 Milan, Italy.

Germanium (Ge) has long been recognized for its superior carrier mobility and narrower band gap compared to silicon, making it a promising candidate in microelectronics and optoelectronics. The recent demonstration of good biocompatibility, combined with the ability to selectively functionalize its surface, establishes the way for its use in biosensing and bioimaging. This review provides a comprehensive analysis of the most recent advancements in the wet chemical functionalization of germanium surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!