A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of Ligand Protonation in Dihydrogen Evolution from a Pentamethylcyclopentadienyl Rhodium Catalyst. | LitMetric

Recent work has shown that Cp*Rh(bpy) [Cp* = pentamethylcyclopentadienyl, bpy = 2,2'- bipyridine] undergoes endo protonation at the [Cp*] ligand in the presence of weak acid (EtNH; pK = 18.8 in MeCN). Upon exposure to stronger acid (e.g., DMFH; pK = 6.1), hydrogen is evolved with unity yield. Here, we study the mechanisms by which this catalyst evolves dihydrogen using density functional theory (M06) with polarizable continuum solvation. The calculations show that the complex can be protonated by weak acid first at the metal center with a barrier of 3.2 kcal/mol; this proton then migrates to the ring to form the detected intermediate, a rhodium(I) compound bearing endo η-Cp*H. Stronger acid is required to evolve hydrogen, which calculations show happens via a concerted mechanism. The acid approaches and protonates the metal, while the second proton simultaneously migrates from the ring with a barrier of ∼12 kcal/mol. Under strongly acidic conditions, we find that hydrogen evolution can proceed through a traditional metal-hydride species; protonation of the initial hydride to form an H-H bond occurs before migration of the hydride (in the form of a proton) to the [Cp*] ring (i.e., H-H bond formation is faster than hydride-proton tautomerization). This work demonstrates the role of acid strength in accessing different mechanisms of hydrogen evolution. Calculations also predict that modification of the bpy ligand by a variety of functional groups does not affect the preference for [Cp*] protonation, although the driving force for protonation changes. However, we predict that exchange of bpy for a bidentate phosphine ligand will stabilize a rhodium(III) hydride, reversing the preference for bound [Cp*H] found in all computed bpy derivatives and offering an appealing alternative ligand platform for future experimental and computational mechanistic studies of H evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b01698DOI Listing

Publication Analysis

Top Keywords

weak acid
8
stronger acid
8
migrates ring
8
hydrogen evolution
8
hydride form
8
h-h bond
8
acid
6
protonation
5
role ligand
4
ligand protonation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!