A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Controlling the object phase for g-factor reduction in phase-Constrained parallel MRI using spatially selective RF pulses. | LitMetric

Purpose: Parallel imaging generally entails a reduction in the signal-to-noise ratio of the final image. Phase-constrained methods aim to improve reconstruction quality by using symmetry properties of k-space. Noise amplification in phase-constrained reconstruction depends heavily on the object background phase. The purpose of this work is to present a new approach of using tailored radiofrequency pulses to optimize the object phase distribution in order to maximize the benefit of phase-constrained reconstruction, and to minimize the noise amplification.

Methods: Intrinsic object phase and coil sensitivity profiles are measured in a prescan. Optimal phase distribution is computed to maximize signal-to-noise ratio in the given setup. Tailored radiofrequency pulses are designed to introduce the optimal phase map in the following accelerated acquisitions, subsequently reconstructed by phase-constrained methods. The potential of the method is demonstrated in vivo with in-plane accelerated (8x) and simultaneous multislice (3x) acquisitions.

Results: Mean g-factors are reduced by up to a factor of 2 compared with conventional techniques when an appropriate phase-constrained reconstruction is applied to phase-optimized acquisitions, enhancing the signal-to-noise ratio of the final images and the visibility of small details.

Conclusions: Combining phase-constrained reconstruction and phase optimization by tailored radiofrequency pulses can provide notable improvement in the signal-to-noise ratio and reconstruction quality of accelerated MRI. Magn Reson Med 79:2113-2125, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.26890DOI Listing

Publication Analysis

Top Keywords

signal-to-noise ratio
16
phase-constrained reconstruction
16
object phase
12
tailored radiofrequency
12
radiofrequency pulses
12
ratio final
8
phase-constrained methods
8
reconstruction quality
8
phase distribution
8
optimal phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!