Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The exocyst, conserved from yeast to plants to mammals, is a hetero-octameric complex that mediates tethering of secretory vesicles to designated sites on the plasma membrane during polarized exocytosis. Because structural studies of the intact exocyst complex have been greatly limited by the low yields of purified proteins, many aspects of the exocyst functions remain poorly understood. Here, we present the protocols for the isolation and purification of the recombinant and the native plant exocyst complex. Given the known diversification of the exocyst subunits in plants, our protocols will likely open the possibility of unraveling the functional significance of these subunits in the context of the fully assembled exocyst complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7262-3_22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!