Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model.

Int J Comput Assist Radiol Surg

Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

Published: January 2018

Purpose: Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional movements are necessary to predict remaining functional outcome. We aim to evaluate how volunteer-specific MAPs derived from surface electromyographic (sEMG) signals control a biomechanical face model.

Methods: Muscle activity of seven facial muscles in six volunteers was measured bilaterally with sEMG. A triple camera set-up recorded 3D lip movement. The generic face model in ArtiSynth was adapted to our needs. We controlled the model using the volunteer-specific MAPs. Three activation strategies were tested: activating all muscles [Formula: see text], selecting the three muscles showing highest muscle activity bilaterally [Formula: see text]-this was calculated by taking the mean of left and right muscles and then selecting the three with highest variance-and activating the muscles considered most relevant per instruction [Formula: see text], bilaterally. The model's lip movement was compared to the actual lip movement performed by the volunteers, using 3D correlation coefficients [Formula: see text].

Results: The correlation coefficient between simulations and measurements with [Formula: see text] resulted in a median [Formula: see text] of 0.77. [Formula: see text] had a median [Formula: see text] of 0.78, whereas with [Formula: see text] the median [Formula: see text] decreased to 0.45.

Conclusion: We demonstrated that MAPs derived from noninvasive sEMG measurements can control movement of the lips in a generic finite element face model with a median [Formula: see text] of 0.78. Ultimately, this is important to show the patient-specific residual movement using the patient's own MAPs. When the required treatment tools and personalisation techniques for geometry and anatomy become available, this may enable surgeons to test the functional results of wedge excisions for lip cancer in a virtual environment and to weigh surgery versus organ-sparing radiotherapy or photodynamic therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5754395PMC
http://dx.doi.org/10.1007/s11548-017-1659-5DOI Listing

Publication Analysis

Top Keywords

[formula text]
36
median [formula
16
face model
12
lip movement
12
text] median
12
[formula
11
text]
9
semg signals
8
biomechanical face
8
volunteer-specific maps
8

Similar Publications

This paper proposes a hybridized model for air quality forecasting that combines the Support Vector Regression (SVR) method with Harris Hawks Optimization (HHO) called (HHO-SVR). The proposed HHO-SVR model utilizes five datasets from the environmental protection agency's Downscaler Model (DS) to predict Particulate Matter ([Formula: see text]) levels. In order to assess the efficacy of the suggested HHO-SVR forecasting model, we employ metrics such as Mean Absolute Percentage Error (MAPE), Average, Standard Deviation (SD), Best Fit, Worst Fit, and CPU time.

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

Fuzzy self-tuning fractional order PD permanent magnet synchronous motor speed control based on torque compensation.

Sci Rep

January 2025

Changchun Automobile Economic & Technological Development Zone Employment Service Bureau, Jilin City, China.

The permanent magnet synchronous motor control system is characterized by its nonlinear and strongly coupled complexity, presenting significant challenges for control performance optimization. To address these challenges, a Fuzzy adaptive fractional order [Formula: see text] control strategy based on torque observation compensation is proposed. The parameters of the fractional order [Formula: see text] controller are optimized real time using fuzzy logic reasoning, in order to enhance the speed of parameters tuning, a graphical design method of the fractional order [Formula: see text] controller parameters based on frequency domain performance indicators is proposed to obtain the initial values of the fuzzy adaptive fractional order [Formula: see text] controller parameters graphically and intuitively.

View Article and Find Full Text PDF

A wealth of details regarding an individual's state of health, like a person's respiratory and metabolic functioning, can be studied by analyzing the volatile molecules and atoms in human exhaled breath. Besides, the salinity of seawater is a crucial factor in understanding its characteristics because any variation in the salinity of seawater represents the variations in the hydrological, biological, and chemical distributions. In this paper, a symmetrical one-dimensional phononic structure is theoretically designed using two symmetrical crystals separated with a defective cavity.

View Article and Find Full Text PDF

Advanced KNN-based cost-efficient algorithm for precision localization and energy optimization in dynamic underwater sensor networks.

Sci Rep

January 2025

Department of Natural and Engineering Sciences, College of Applied Studies and Community Services, King Saud University, Riyadh, 11543, Saudi Arabia.

Underwater environmental exploration using sensor nodes has emerged as a critical endeavor fraught with challenges such as localization errors, energy, and costs attributed to the dynamic nature of underwater environments. This paper proposes a KNN-based cost-efficient machine-learning algorithm aimed at optimizing underwater context acquisition with sensor nodes. By addressing existing localization challenges, the algorithm minimizes localization errors, energy consumption and Time costs while significantly enhancing localization accuracy to 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!