The diversity of cephalopod species and the differences in morphology and the habitats in which they live, illustrates the ability of this class of molluscs to adapt to all marine environments, demonstrating a wide spectrum of patterns to search, detect, select, capture, handle, and kill prey. Photo-, mechano-, and chemoreceptors provide tools for the acquisition of information about their potential preys. The use of vision to detect prey and high attack speed seem to be a predominant pattern in cephalopod species distributed in the photic zone, whereas in the deep-sea, the development of mechanoreceptor structures and the presence of long and filamentous arms are more abundant. Ambushing, luring, stalking and pursuit, speculative hunting and hunting in disguise, among others are known modes of hunting in cephalopods. Cannibalism and scavenger behavior is also known for some species and the development of current culture techniques offer evidence of their ability to feed on inert and artificial foods. Feeding requirements and prey choice change throughout development and in some species, strong ontogenetic changes in body form seem associated with changes in their diet and feeding strategies, although this is poorly understood in planktonic and larval stages. Feeding behavior is altered during senescence and particularly in brooding octopus females. Cephalopods are able to feed from a variety of food sources, from detritus to birds. Their particular requirements of lipids and copper may help to explain why marine crustaceans, rich in these components, are common prey in all cephalopod diets. The expected variation in climate change and ocean acidification and their effects on chemoreception and prey detection capacities in cephalopods are unknown and needs future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563153 | PMC |
http://dx.doi.org/10.3389/fphys.2017.00598 | DOI Listing |
Nature
January 2025
Earth Collections, University Museum of Natural History, Oxford, UK.
Mollusca is the second most species-rich animal phylum, but the pathways of early molluscan evolution have long been controversial. Modern faunas retain only a fraction of the past forms in this hyperdiverse and long-lived group. Recent analyses have consistently recovered a fundamental split into two sister clades, Conchifera (including gastropods, bivalves and cephalopods) and Aculifera, comprising Polyplacophora ('chitons') and Aplacophora.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
University College Dublin, School of Biology and Environmental Science, Belfield, Dublin 4, Ireland.
Chemical signaling can play a crucial role in predator-prey dynamics. Here, we present evidence that ink from the common cuttlefish (Sepia officinalis) targets olfactory receptor proteins in shark, potentially acting as a predator deterrence. We apply in silico 3D docking analysis to investigate the binding affinity of various odorant molecules to shark olfactory receptors of two shark species: cloudy catshark (Scyliorhinus torazame) and white shark (Carcharodon carcharias).
View Article and Find Full Text PDFPLoS One
January 2025
Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile.
Marine microbial communities colonizing the skin of invertebrates constitute the primary barrier between host and environment, potentially exerting beneficial, neutral, or detrimental effects on host fitness. To evaluate the potential contribution of epibiotic bacteria to the survival of early developmental stages of Octopus mimus, bacterial isolates were obtained from eggs, paralarvae, and adults. Their enzymatic activities were determined, and antibacterial properties were assessed against common marine pathogens.
View Article and Find Full Text PDFLearn Behav
January 2025
Normandie UnivUnicaen, CNRS, EthoS, 14000, Caen, France.
Episodic memory and future thinking are generally considered as two parts of the same mental time travelling system in vertebrates. Modern cephalopods, with their independent evolutionary lineage and their complex cognitive abilities, appear as promising species to determine whether these abilities have separate evolutionary histories or not. In our study, we tested future-planning abilities in a cephalopod species which has been shown to possess episodic-like memory abilities: the common cuttlefish.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.
The present review provides the first analysis and synthesis of the available scientific information on the effects of anthropogenic contaminants on cephalopod embryos, paralarvae, and juveniles. We evaluated 46 articles published between 1970 and 2023 that focused on trace elements (69%), pharmaceutical compounds (11%), persistent organic compounds (11%), and plastics (9%). To date, the greatest scientific effort has originated from Europe and Asia (France [57%], China [9%], Italy [7%], and Spain [4%]), with few reports available from the rest of the world.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!