Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To understand the mechanism controlling cultivar differences in the accumulation of ciprofloxacin (CIP) in Chinese flowering cabbage (Brassica parachinensis L.), low-molecular-weight organic acids (LMWOAs) secreted from the roots of high- and low-CIP cultivars (Sijiu and Cutai, respectively) and their effects on the bioavailability of CIP in soil were investigated. Significant differences in the content of LMWOAs (especially maleic acid) between the two cultivars played a key role in the variation in CIP accumulation. Based on the Freundlich sorption coefficient (K ) and distribution coefficient (K ), the presence of LMWOAs reduced the CIP sorption onto soil particles, and higher concentrations of LMWOAs led to less CIP sorption onto soil. On the other hand, LMWOAs enhanced CIP desorption by lowering the solution pH, which changed the surface charge of soil particles and the degree of CIP ionization. LMWOAs promoted CIP desorption from soil by breaking cation bridges and dissolving metal cations, particularly Cu. These results implied that the LMWOAs (mainly maleic acid) secreted from Sijiu inhibited CIP sorption onto soil and improved CIP desorption from soil to a greater extent than those secreted from Cutai, resulting in higher bioavailability of CIP and more uptake and accumulation of CIP in the former.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579271 | PMC |
http://dx.doi.org/10.1038/s41598-017-10701-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!