A tin dioxide thin layer has been studied in order to improve the sensitivity of lossy mode resonances (LMR) based sensors. The effects of the thin film thickness and the polarization of light in a SnO coated D-shaped single mode optical fiber have been evaluated. The optimization of such parameters in the fabrication of refractometers have led to an unprecedented sensitivity of over one million nanometers per refractive index unit (RIU), which means a sensitivity below 10 RIU with a pm resolution detector. This achievement is a milestone for the development of new high sensitivity devices and opens the door to new industrial applications, such as gear oil degradation, or biomedical devices where previous devices could not provide enough sensitivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579297 | PMC |
http://dx.doi.org/10.1038/s41598-017-11145-9 | DOI Listing |
Sensors (Basel)
November 2024
Mechanical and Systems Research Laboratory, Industrial Technology Research Institute, Hsinchu 310401, Taiwan.
We present a high-sensitivity fiber optic soil moisture sensor based on side-polished multimode fibers and lossy mode resonance (LMR). The multimode fibers (MMFs), after side-polishing to form a D-shaped structure, are coated with a single-layer SnO thin film by electron beam evaporation with ion-assisted deposition technology. The LMR effect can be obtained when the refractive index of the thin film is positive and greater than its extinction coefficient and the real part of the external medium permittivity.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
Biomarker detection has emerged as an essential complementary approach for early-stage screening of tumors. Conventional methods are constrained by bulky systems, cumbersome operation steps, and low detection accuracy. Here, we demonstrate a dual-resonance optimally configured lossy mode resonance (LMR) immunoprobe for detecting prostate-specific antigen (PSA), a biomarker for prostate cancer (PCa).
View Article and Find Full Text PDFNanophotonics
March 2024
School of Electrical Engineering and Computer Science, Department of Semiconductor Engineering, and Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju 61005, Republic of Korea.
J Environ Manage
December 2024
Ecology and Ecosystem Research Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India. Electronic address:
Soil carbon estimates in the Indian Himalayan region-a global climate change hotspot-primarily rely on the lossy wet oxidation method and predominantly focus on soil organic carbon (SOC), neglecting the soil inorganic carbon (SIC) component. Sensitive and holistic soil carbon estimates are crucial for effective policy planning. By incorporating eight major Central Himalayan forest types along a 3000 m elevational gradient, we report that the acidic Himalayan soil (surface soil pH: 4.
View Article and Find Full Text PDFR Soc Open Sci
November 2024
Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
We present the first comprehensive study for signal growth in transmission lines (TL) with purely time-modulated characteristic impedance (infinite superluminality). This study pioneers the investigation into the effects of varying the cell's electrical length and the impact of loss on momentum bandgaps and amplification levels. It also thoroughly examines how time-modulated transmission line truncation by a static load influences the sensitivity of amplification gain to the relative phase between the incoming signal and modulation, comparing these findings with the case of parametric amplification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!