The centrosome is the primary microtubule-organizing center (MTOC) of most animal cells; however, this organelle is absent during early mammalian development. Therefore, the mechanism by which the mammalian embryo organizes its microtubules (MTs) is unclear. We visualize MT bridges connecting pairs of cells and show that the cytokinetic bridge does not undergo stereotypical abscission after cell division. Instead, it serves as scaffold for the accumulation of the MT minus-end-stabilizing protein CAMSAP3 throughout interphase, thereby transforming this structure into a noncentrosomal MTOC. Transport of the cell adhesion molecule E-cadherin to the membrane is coordinated by this MTOC and is required to form the pluripotent inner mass. Our study reveals a noncentrosomal form of MT organization that directs intracellular transport and is essential for mammalian development.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aam9335DOI Listing

Publication Analysis

Top Keywords

microtubule-organizing center
8
intracellular transport
8
mammalian development
8
center directing
4
directing intracellular
4
transport early
4
early mouse
4
mouse embryo
4
embryo centrosome
4
centrosome primary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!