Novel peptide MT23 for potent penetrating and selective targeting in mouse melanoma cancer cells.

Eur J Pharm Biopharm

Medical School, China Three Gorges University, Yichang 443002, China; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States. Electronic address:

Published: November 2017

Cell-penetrating peptides (CPPs) have a great potential for intracellular delivery of cell-impermeable biological macromolecules in clinical therapy. However, their lack of cell and tissue specificity remains the primary limitation for their clinical development as drug delivery vehicles. In this study, based on phage display and an in silico approach, we found a novel CPP-MT23 with mouse melanoma cell specificity, it can only enter B16 melanoma cancer cells and without any cytotoxicity, Moreover, MT23 showed higher penetration efficiency based on fluorescence microcopy and quantitative assay, and it has capability for mediating functional Apoptin into cells in vitro or in vivo. Moreover, MT23-Apoptin can significantly inhibit tumor growth and induce the cell apoptosis in B16 tumor bearing mice. To sum up, all the results implicated that MT23 has the potential to deliver exogenous therapeutic proteins for further use and it also expected to lay the foundation for developing human melanoma cancer cell specific CPP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2017.08.011DOI Listing

Publication Analysis

Top Keywords

melanoma cancer
12
mouse melanoma
8
cancer cells
8
novel peptide
4
peptide mt23
4
mt23 potent
4
potent penetrating
4
penetrating selective
4
selective targeting
4
targeting mouse
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.

Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.

View Article and Find Full Text PDF

Outcomes of Immunotherapy Treatment in Sinonasal Mucosal Melanoma.

Am J Rhinol Allergy

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania.

Background: Sinonasal mucosal melanoma has poor survival despite multimodality treatment. While the impact of immunotherapy (IT) on metastatic cutaneous melanoma is well-defined, there are relatively little data on sinonasal mucosal melanoma.

Objective: We sought to define immunotherapy outcomes in patients with sinonasal mucosal melanoma.

View Article and Find Full Text PDF

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Single-cell analysis unveils cell subtypes of acral melanoma cells at the early and late differentiation stages.

J Cancer

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China.

Background: Melanoma, a malignant neoplasm originating from melanocytes, is a form of skin cancer with rapidly increasing global incidence, often exacerbated by UV radiation[1]. Particularly, acral melanoma, characterized by its swift metastasis and poor prognosis, underscores the significance of further research into its heterogeneity. Single-cell sequencing has been widely utilized in the study of tumor heterogeneity; however, research related to melanoma remains to be further refined.

View Article and Find Full Text PDF

Melanoma poses a significant challenge to patients due to its aggressive nature and limited treatment options. Recent studies have suggested that lasalocid, a feed additive ionophore antibiotic, may have potential as an anticancer agent. However, the mechanism of lasalocid in melanoma is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!