During range expansions, organisms are often exposed to multiple pressures, including novel enemies (i.e., predators, competitors and/or parasites) and unfamiliar or limited resources. Additionally, small propagule sizes at range edges can result in genetic founder effects and bottlenecks, which can affect phenotypic diversity and thus selection. Despite these obstacles, individuals in expanding populations often thrive at the periphery of a range, and this success may be mediated by phenotypic plasticity. Increasing evidence suggests that epigenetic mechanisms may underlie such plasticity because they allow for more rapid phenotypic responses to novel environments than are possible via the accumulation of genetic variation. Here, we review how molecular epigenetic mechanisms could facilitate plasticity in range-expanding organisms, emphasizing the roles of DNA methylation and other epigenetic marks in the physiological regulatory networks that drive whole-organism performance. We focus on the hypothalamic-pituitary-adrenal (HPA) axis, arguing that epigenetically-mediated plasticity in the regulation of glucocorticoids in particular might strongly impact range expansions. We hypothesize that novel environments release and/or select for epigenetic potential in HPA variation and hence organismal performance and ultimately fitness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icb/icx082 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.
In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.
View Article and Find Full Text PDFJ Dent Sci
December 2024
Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R., China.
The World Health Organization (WHO) has added glass ionomer cement (GIC) to the WHO Model List of Essential Medicines since 2021, which represents the most efficacious, safe and cost-effective medicines for priority conditions. With the potential increase in the use of GIC, this review aims to provide an overview of the clinical application of GIC with updated evidence in restorative and preventive dentistry. GIC is a versatile dental material that has a wide range of clinical applications, particularly in restorative and preventive dentistry.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, 71491, Tabuk, Saudi Arabia.
In this study, the -model expansion method is showed to be useful for finding solitary wave solutions to the Klein-Gordon (KG) equation. We develop a variety of solutions, including Jacobi elliptic functions, hyperbolic forms, and trigonometric forms, so greatly enhancing the range of exact solutions attainable. The 2D, 3D, and contour plots clearly show different types of solitary waves, like bright, dark, singular, and periodic solitons.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6.
The cost of encoding a system Hamiltonian in a digital quantum computer as a linear combination of unitaries (LCU) grows with the 1-norm of the LCU expansion. The Block Invariant Symmetry Shift (BLISS) technique reduces this 1-norm by modifying the Hamiltonian action on only the undesired electron-number subspaces. Previously, BLISS required a computationally expensive nonlinear optimization that was not guaranteed to find the global minimum.
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Electronics and Information, Xi'an Polytechnic University, Xian, People's Republic of China.
Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!