The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852632 | PMC |
http://dx.doi.org/10.1093/cvr/cvx133 | DOI Listing |
Stem Cell Rev Rep
January 2025
Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium.
Reliable models of the blood-brain barrier (BBB), wherein brain microvascular endothelial cells (BMECs) play a key role in maintenance of barrier function, are essential tools for developing therapeutics and disease modeling. Recent studies explored generating BMEC-like cells from human pluripotent stem cells (hPSCs) by mimicking brain-microenvironment signals or genetic reprogramming. However, due to the lack of comprehensive transcriptional studies, the exact cellular identity of most of these cells remains poorly defined.
View Article and Find Full Text PDFiScience
January 2025
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
ETV2/ER71, an ETS (E-twenty six) transcription factor, is critical for hematopoiesis and vascular development. However, research about the molecular mechanisms behind ETV2-mediated gene transcription is limited. Herein, we demonstrate that ETV2 and KDM4A, an H3K9 demethylase, regulate hematopoietic and endothelial genes.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
During embryogenesis, endothelial cells (ECs) are generally described to arise from a common pool of progenitors termed angioblasts, which diversify through iterative steps of differentiation to form functionally distinct subtypes of ECs. A key example is the formation of lymphatic ECs (LECs), which are thought to arise largely through transdifferentiation from venous endothelium. Opposing this model, here we show that the initial expansion of mammalian LECs is primarily driven by the in situ differentiation of mesenchymal progenitors and does not require transition through an intermediate venous state.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, PR China.
Sluggish reaction kinetics of sulfur species fundamentally trigger the incomplete conversion of S↔LiS and restricted lifespan of lithium-sulfur batteries, especially under high sulfur loading and/or low electrolyte/sulfur (E/S) ratios. Developing redox mediators (RMs) is an effective strategy to boost the battery reaction kinetics, yet their multifunctionality and shuttle inhibition are still not available. Here, a unique ethyl viologen (EtV) RM with two highly reversible redox couples (EtV/EtV, EtV/EtV) is demonstrated to well match the redox chemistry of sulfur species, in terms of accelerating the electron transfer in S reduction, LiS nucleation and the LiS oxidation.
View Article and Find Full Text PDFNat Commun
November 2024
McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!