AI Article Synopsis

  • Dexamethasone (DEX) plays a role in reducing tissue growth and hearing loss after cochlear implantation, but its effects on spiral ganglion neurons (SGN) are not well understood.
  • Three methods of delivering DEX to the inner ear were tested: elution from silicone electrodes, passive diffusion from a reservoir, and active pump application.
  • Results showed that DEX did not change SGN density but improved neuroprotection when combined with chronic electrical stimulation, indicating its potential for enhancing outcomes in cochlear implantation procedures.

Article Abstract

Dexamethasone (DEX) can reduce fibrous tissue growth as well as loss of residual hearing which may occur after cochlear implantation. Little is known about the effect of local inner ear DEX treatment on the spiral ganglion neurons (SGN), which are the target of the electrical stimulation with a cochlear implant (CI). Three different clinically relevant strategies of DEX-delivery into the inner ear were used. DEX was either eluted from the electrode carriers' silicone, released from a reservoir by passive diffusion, or actively applied using a pump based system. The effect of the locally applied DEX on SGN density, size and function was evaluated. DEX did not affect the SGN density compared to the relevant control groups. Simultaneously applied with chronic electrical stimulation (ES), DEX increased the neuroprotective effect of ES in the basal region and the hearing threshold tended to decrease. The EABR thresholds did not correlate with the relevant SGN density. When correlating the SGN number with fibrosis, no dependency was observed. DEX concentrations as applied in these animal models are safe for inner ear delivery in terms of their effect on SGN density. Additionally, DEX tends to improve the neuroprotective effect of chronic electrical stimulation by increasing the number of surviving neurons. This is an important finding in regard to clinical applications of DEX for local treatment of the inner ear in view of cochlear implantation and other applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578571PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183820PLOS

Publication Analysis

Top Keywords

inner ear
20
electrical stimulation
16
sgn density
16
chronic electrical
12
dex
9
local inner
8
cochlear implant
8
models safe
8
neuroprotective chronic
8
cochlear implantation
8

Similar Publications

Novel therapeutic delivery systems and delivery methods to the inner ear are necessary to treat hearing loss and inner ear disorders. However, numerous barriers exist to therapeutic delivery into the bone-encased and immune-privileged environment of the inner ear and cochlea, which makes treating inner ear disorders challenging. Nanoparticles (NPs) are a type of therapeutic delivery system that can be engineered for multiple purposes, and posterior semicircular canal (PSCC) infusion is a method to directly deposit them into the cochlea.

View Article and Find Full Text PDF

Background: Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive.

View Article and Find Full Text PDF

Migration routes and the depth patterns of anguillid eel larvae migrating long distances from spawning grounds in the ocean remain poorly understood. We used otolith stable isotope analysis to study the oceanic migrations of anguillid eels by reconstructing experienced water temperature histories of larvae. The otolith stable oxygen isotopes (δO) of recruited Anguilla japonica glass eels were analyzed to assess the relationship with the experienced water temperature of the early larval stage in laboratory experiments.

View Article and Find Full Text PDF

Chemically defined and dynamic click hydrogels support hair cell differentiation in human inner ear organoids.

Stem Cell Reports

December 2024

Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:

The mechanical properties in the inner ear microenvironment play a key role in its patterning during embryonic development. To recapitulate inner ear development in vitro, three-dimensional tissue engineering strategies including the application of representative tissue models and scaffolds are of increasing interest. Human inner ear organoids are a promising model to recapitulate developmental processes; however, the current protocol requires Matrigel that contains ill-defined extracellular matrix components.

View Article and Find Full Text PDF

Objective: To compare the diagnostic capability of Pöschl reformations created from temporal bone CT (TBCT) and high-resolution noncontrast CT head exams (HR-NECTH) to detect and classify superior semicircular canal (SSC) abnormalities.

Study Design: Retrospective case review.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!