A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Method for Identifying Prevalent Chemical Combinations in the U.S. Population. | LitMetric

A Method for Identifying Prevalent Chemical Combinations in the U.S. Population.

Environ Health Perspect

National Center for Computational Toxicology, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA.

Published: August 2017

Background: Through the food and water they ingest, the air they breathe, and the consumer products with which they interact at home and at work, humans are exposed to tens of thousands of chemicals, many of which have not been evaluated to determine their potential toxicities. Furthermore, while current chemical testing tends to focus on individual chemicals, the exposures that people actually experience involve mixtures of chemicals. Unfortunately, the number of mixtures that can be formed from the thousands of environmental chemicals is enormous, and testing all of them would be impossible.

Objectives: We seek to develop and demonstrate a method for identifying those mixtures that are most prevalent in humans.

Methods: We applied frequent itemset mining, a technique traditionally used for market basket analysis, to biomonitoring data from the 2009-2010 cycle of the continuous National Health and Nutrition Examination Survey (NHANES) to identify combinations of chemicals that frequently co-occur in people.

Results: We identified 90 chemical combinations consisting of relatively few chemicals that occur in at least 30% of the U.S. population, as well as three supercombinations consisting of relatively many chemicals that occur in a small but nonnegligible proportion of the U.S. population.

Conclusions: We demonstrated how FIM can be used in conjunction with biomonitoring data to narrow a large number of possible chemical combinations down to a smaller set of prevalent chemical combinations. https://doi.org/10.1289/EHP1265.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801475PMC
http://dx.doi.org/10.1289/EHP1265DOI Listing

Publication Analysis

Top Keywords

chemical combinations
16
method identifying
8
prevalent chemical
8
biomonitoring data
8
consisting chemicals
8
chemicals occur
8
chemicals
7
chemical
5
combinations
5
identifying prevalent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!