A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Role for 2-Methyl Pyrrole in the Browning of 4-Oxopentanal and Limonene Secondary Organic Aerosol. | LitMetric

Reactions of ammonia or ammonium sulfate (AS) with carbonyls in secondary organic aerosol (SOA) produced from limonene are known to form brown carbon (BrC) with a distinctive absorption band at 505 nm. This study examined the browning processes in aqueous solutions of AS and 4-oxopentanal (4-OPA), which has a 1,4-dicarbonyl structural motif present in many limonene SOA compounds. Aqueous reactions of 4-OPA with AS were found to produce 2-methyl pyrrole (2-MP), which was detected by gas chromatography. While 2-MP does not absorb visible radiation, it can further react with 4-OPA eventually forming BrC compounds. This was demonstrated by reacting 2-MP with 4-OPA or limonene SOA, both of which produced BrC with absorption bands at 475 and 505 nm, respectively. The formation of BrC in the reaction of 4-OPA with AS and ammonium nitrate was greatly accelerated by evaporation of the solution suggesting an important role of the dehydration processes in BrC formation. 4-OPA was also found to produce BrC in aqueous reactions with a broad spectrum of amino acids and amines. These results suggest that 4-OPA may be the smallest atmospherically relevant compound capable of browning by the same mechanism as limonene SOA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b02293DOI Listing

Publication Analysis

Top Keywords

limonene soa
12
2-methyl pyrrole
8
secondary organic
8
organic aerosol
8
soa produced
8
aqueous reactions
8
4-opa produce
8
4-opa
7
brc
6
limonene
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!