A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials. | LitMetric

Gathering required information in a fast and inexpensive way is essential for assessing the risks of engineered nanomaterials (ENMs). The extension of conventional (quantitative) structure-activity relationships ((Q)SARs) approach to nanotoxicology, i.e., nano-(Q)SARs, is a possible solution. The preliminary attempts of correlating ENMs' characteristics to the biological effects elicited by ENMs highlighted the potential applicability of (Q)SARs in the nanotoxicity field. This review discusses the current knowledge on the development of nano-(Q)SARs for metallic ENMs, on the aspects of data sources, reported nano-(Q)SARs, and mechanistic interpretation. An outlook is given on the further development of this frontier. As concluded, the used experimental data mainly concern the uptake of ENMs by different cell lines and the toxicity of ENMs to cells lines and . The widely applied techniques of deriving models are linear and non-linear regressions, support vector machine, artificial neural network, -nearest neighbors, etc. Concluded from the descriptors, surface properties of ENMs are seen as vital for the cellular uptake of ENMs; the capability of releasing ions and surface redox properties of ENMs are of importance for evaluating nanotoxicity. This review aims to present key advances in relevant nano-modeling studies and stimulate future research efforts in this quickly developing field of research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615668PMC
http://dx.doi.org/10.3390/ma10091013DOI Listing

Publication Analysis

Top Keywords

quantitative structure-activity
8
structure-activity relationships
8
enms
8
uptake enms
8
properties enms
8
review advances
4
advances development
4
development quantitative
4
relationships metallic
4
metallic nanomaterials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!