Periodic Surface-Ring Pattern Formation for Hydroxyapatite Thin Films Formed by Biomineralization-Inspired Processes.

Langmuir

Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Published: September 2017

Surface morphology is a key factor that might significantly influence the properties of biomaterials. In this study, periodic surface-ring structures have been constructed for calcium phosphate thin films via biomineralization-inspired crystallization process. The patterned octacalcium phosphate crystals have been obtained on poly(2-hydroxyethyl methacrylate) (PHEMA) matrix in the presence of poly(acrylic acid) (PAA). The patterned surface morphologies of the crystal thin films could be tuned by the amount of PAA additives. In addition, the rapid and topotactic transformation to hydroxyapatite (HAP) thin films with surface-ring structures has also been achieved. This study may provide new strategy toward the design of functional calcium phosphate-based thin-film hybrids.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b02126DOI Listing

Publication Analysis

Top Keywords

thin films
16
periodic surface-ring
8
surface-ring structures
8
surface-ring pattern
4
pattern formation
4
formation hydroxyapatite
4
thin
4
hydroxyapatite thin
4
films
4
films formed
4

Similar Publications

With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.

View Article and Find Full Text PDF

Editorial for Special Issue: "Thin Films Based on Nanocomposites (2nd Edition)".

Nanomaterials (Basel)

December 2024

National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125 Magurele, Romania.

The continuous demand for multifunctional materials in industrial applications has driven the design of nanocomposites with new or enhanced properties [...

View Article and Find Full Text PDF

A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications.

Nanomaterials (Basel)

December 2024

Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.

This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.

View Article and Find Full Text PDF

Surface-Functionalizing Strategies for Multiplexed Molecular Biosensing: Developments Powered by Advancements in Nanotechnologies.

Nanomaterials (Basel)

December 2024

Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.

Multiplexed biosensing methods for simultaneously detecting multiple biomolecules are important for investigating biological mechanisms associated with physiological processes, developing applications in life sciences, and conducting medical tests. The development of biosensors, especially those advanced biosensors with multiplexing potentials, strongly depends on advancements in nanotechnologies, including the nano-coating of thin films, micro-nano 3D structures, and nanotags for signal generation. Surface functionalization is a critical process for biosensing applications, one which enables the immobilization of biological probes or other structures that assist in the capturing of biomolecules.

View Article and Find Full Text PDF

Transparent thin-film heaters have sparked great interest in both the scientific and industrial sectors due to their critical role in various technologies, including smart windows, displays, actuators, and sensors. In this review, we summarize the structural design, fabrication methods, properties, and materials used in thin-film heaters. We also discuss methods to improve their efficiency and recent advancements in the field, and provide insights into the market size, growth, and future outlook for thin-film heaters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!