A series of 180 vinblastine 20' amides were prepared in three steps from commercially available starting materials, systematically exploring a typically inaccessible site in the molecule enlisting a powerful functionalization strategy. Clear structure-activity relationships and a structural model were developed in the studies which provided many such 20' amides that exhibit substantial and some even remarkable enhancements in potency, many that exhibit further improvements in activity against a Pgp overexpressing resistant cancer cell line, and an important subset of the vinblastine analogues that display little or no differential in activity against a matched pair of vinblastine sensitive and resistant (Pgp overexpressing) cell lines. The improvements in potency directly correlated with target tubulin binding affinity, and the reduction in differential functional activity against the sensitive and Pgp overexpressing resistant cell lines was found to correlate directly with an impact on Pgp-derived efflux.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599373PMC
http://dx.doi.org/10.1021/acs.jmedchem.7b00958DOI Listing

Publication Analysis

Top Keywords

20' amides
12
pgp overexpressing
12
vinblastine 20'
8
pgp-derived efflux
8
overexpressing resistant
8
cell lines
8
vinblastine
4
amides synthetic
4
synthetic analogues
4
analogues maintain
4

Similar Publications

Background: Uncommon EGFR mutations are a kind of heterogeneous group of mutations with various responses to EGFR-TKIs and are often excluded from most prospective clinical trials. In this real-world retrospective study, we retrospectively compared the efficacy and safety of chemotherapy or various generations of EGFR-TKIs as first-line therapy in NSCLC Chinese patients harboring non-ex 20 ins uncommon EGFR mutations.

Methods: We enrolled 139 NSCLC patients with non-ex 20 ins uncommon EGFR mutations in this study retrospectively.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Background: In TALAPRO-2, the poly(ADP-ribose) polymerase inhibitor talazoparib plus the androgen receptor-signaling inhibitor enzalutamide improved radiographic progression-free survival (rPFS) versus placebo plus enzalutamide (hazard ratio [HR] = 0.63; 95% CI, 0.51-0.

View Article and Find Full Text PDF

Background: The limited and detailed literature on total intravenous anesthesia (TIVA), as well as the clinical indications for unilateral ovariectomy in llamas, are not well-defined. Therefore, it is necessary to understand the anesthetic events and the surgical intervention in this species.

Aim: The objective of this study was to evaluate the intraoperative physiological and clinical parameters in llamas undergoing unilateral ovariectomy, under three protocols of TIVA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!