Both respiratory syncytial virus (RSV) and influenza A virus (IAV) may infect human peripheral blood mononuclear leukocytes (PBMC) during the immune response to viral challenge as the cells are recruited to the respiratory tract. The current studies demonstrated differences in PBMC responses to the two viruses very early after exposure, including reduced fos protein and CD69 expression and IL-2 production by RSV-exposed T lymphocytes. Exposure to RSV resulted in reduced lymphocyte proliferation despite evidence of a virus-specific T lymphocyte frequency equivalent to that for influenza virus. Reduced RSV-induced proliferation was not due to apoptosis, which was itself reduced relative to that of influenza virus-exposed T lymphocytes. The data indicate that differential immune responses to RSV and influenza virus are determined early after exposure of human PBMC and support the concept that the anamnestic immune response that might prevent clinically evident reinfection is attenuated very soon after exposure to RSV. Thus, candidate RSV vaccines should be expected to reduce but not prevent clinical illness upon subsequent infection by RSV. Furthermore, effective therapeutic agents for RSV are likely to be needed, especially for high-risk populations, even after vaccine development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690850 | PMC |
http://dx.doi.org/10.1002/jmv.24917 | DOI Listing |
Science
January 2025
Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA.
Influenza virus pandemics and seasonal epidemics have claimed countless lives. Recurrent zoonotic spillovers of influenza viruses with pandemic potential underscore the need for effective countermeasures. In this study, we show that pre-exposure prophylaxis with broadly neutralizing antibody (bnAb) MEDI8852 is highly effective in protecting cynomolgus macaques from severe disease caused by aerosolized highly pathogenic avian influenza H5N1 virus infection.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
January 2025
National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
The co-circulation of influenza and SARS-CoV-2 has led to co-infection events, primarily affecting children and older adults, who are at higher risk for severe disease. Although co-infection prevalence is relatively low, it is associated with worse outcomes compared to mono-infections. Previous studies have shown that the outcomes of co-infection depend on multiple factors, including viral interference, virus-host interaction and host response.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
November 2024
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
The H9N2 subtype of avian influenza virus (AIV) causes severe immunosuppression and high mortality in view of its frequent co-infection with other pathogens, resulting in significant economic losses in the poultry industry. Current vaccines provide suboptimal immune protection against H9N2 AIV owing to antigenic variations, highlighting the urgent need for safe and effective antiviral drugs for the prevention and treatment of this virus. This study aimed to investigate the inhibitory effects of Hypericum japonicum extract on H9N2 AIV.
View Article and Find Full Text PDFmSystems
January 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Respiratory disease (RD) is a worldwide leading threat to the pig industry, but there is still limited understanding of the pathogens associated with swine RD. In this study, we conducted a nationwide genomic surveillance on identifying viruses, bacteria, and antimicrobial resistance genes (ARGs) from the lungs of pigs with RD in China. By performing metatranscriptomic sequencing combined with metagenomic sequencing, we identified 21 viral species belonging to 12 viral families.
View Article and Find Full Text PDFVirus Evol
December 2024
ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France.
Swine influenza A viruses (swIAVs) are a major cause of respiratory disease in pigs worldwide, presenting significant economic and health risks. These viruses can reassort, creating new strains with varying pathogenicity and cross-species transmissibility. This study aimed to monitor the genetic and antigenic evolution of swIAV in France from 2019 to 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!