Propagation of errors from skull kinematic measurements to finite element tissue responses.

Biomech Model Mechanobiol

Department of Mechanical Engineering, Stanford University, 443 Via Ortega, Shriram Center Room 202, Stanford, CA, 94305, USA.

Published: February 2018

Real-time quantification of head impacts using wearable sensors is an appealing approach to assess concussion risk. Traditionally, sensors were evaluated for accurately measuring peak resultant skull accelerations and velocities. With growing interest in utilizing model-estimated tissue responses for injury prediction, it is important to evaluate sensor accuracy in estimating tissue response as well. Here, we quantify how sensor kinematic measurement errors can propagate into tissue response errors. Using previous instrumented mouthguard validation datasets, we found that skull kinematic measurement errors in both magnitude and direction lead to errors in tissue response magnitude and distribution. For molar design instrumented mouthguards susceptible to mandible disturbances, 150-400% error in skull kinematic measurements resulted in 100% error in regional peak tissue response. With an improved incisor design mitigating mandible disturbances, errors in skull kinematics were reduced to <50%, and several tissue response errors were reduced to <10%. Applying 30[Formula: see text] rotations to reference kinematic signals to emulate sensor transformation errors yielded below 10% error in regional peak tissue response; however, up to 20% error was observed in peak tissue response for individual finite elements. These findings demonstrate that kinematic resultant errors result in regional peak tissue response errors, while kinematic directionality errors result in tissue response distribution errors. This highlights the need to account for both kinematic magnitude and direction errors and accurately determine transformations between sensors and the skull.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809213PMC
http://dx.doi.org/10.1007/s10237-017-0957-8DOI Listing

Publication Analysis

Top Keywords

tissue response
16
skull kinematic
12
errors skull
8
kinematic measurements
8
tissue responses
8
kinematic measurement
8
measurement errors
8
mandible disturbances
8
tissue
6
skull
5

Similar Publications

Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).

Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.

View Article and Find Full Text PDF

Background: Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states.

View Article and Find Full Text PDF

Investigating the role of intratumoral Streptococcus mitis in gastric cancer progression: insights into tumor microenvironment.

J Transl Med

January 2025

Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, Jiangsu, P.R. China.

Growing evidence implicates that intratumoral microbiota are closely linked to cancer progression; however, research on the role of these microbiota in the development of gastric cancer remains limited. Here, using 16 S rRNA sequencing, tumor tissue proteomics and serum cytokines analysis, we identified enrichment of specific microbial communities within tumors of gastric cancer patients, possibly affecting the tumor microenvironment by immune modulation, metabolic processes, and inflammatory responses. Based on the results of in vivo experiments and intratumoral microbiota analysis, we found that Streptococcus mitis can inhibit gastric cancer progression via suppressing M2 macrophage polarization and infiltration, as well as altering the intratumoral microbial community.

View Article and Find Full Text PDF

Background: Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.

View Article and Find Full Text PDF

Investigating the significance of SPECT/CT-SUV for monitoring Lu-PSMA-targeted radionuclide therapy: a systematic review.

BMC Med Imaging

January 2025

Department of Radiological Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Background: Quantitative molecular imaging via single-photon emission computed tomography-derived standardised uptake value (SPECT/CT-SUV) is used to assess the response of metastatic castration-resistant prostate cancer (mCRPC) patients to targeted radionuclide therapy (TRT) with [Lu]Lu-PSMA. This imaging technique determines the radiopharmaceutical distribution and internal dosimetry in patients who receive TRT. However, there is limited evidence regarding the role of image quantification in monitoring changes induced by [Lu]Lu-PSMA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!