We study the dissociative adsorption dynamics of N on clean bcc Fe(111) surfaces. We base our theoretical analysis on a multidimensional potential energy surface built from density functional theory. The dissociative sticking probability is computed by means of quasi-classical trajectory calculations. For normal incidence and impact energies of the order of a few eV, our theoretical results agree well with existing experimental values. For these energies, the dynamics of the dissociated molecules shows that dissociation is a direct process that follows narrow paths in the multidimensional space. For lower energies of the beam, this direct process is not enough to explain the measured values. A better agreement with the experiment is obtained if we increase the surface temperature to promote the transfer to dissociation of molecules previously trapped. Most of the molecules dissociate very close to the Fe(111) third layer atoms and with an orientation parallel to the surface. A comparison between the dissociation of N on Fe(111) and Fe(110) highlights the role of the different energy barriers in both surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp03701e | DOI Listing |
J Colloid Interface Sci
December 2024
School of Mechanical Engineering, Qinghai University, Xining 810016, PR China. Electronic address:
Ensuring Ruthenium-based (Ru) catalysts with high metal utilization is a potential and challenging strategy for designing and constructing high catalytic activity electrocatalysts for hydrogen evolution reaction (HER). Herein, Ruthenium single atoms (SA) and Ruthenium nanoparticles (NPs) are simultaneously anchored on hierarchically porous carbon via the self-templates method for the first time. Benefiting from the synergetic effect of hierarchically porous carbon and the coexistence of Ru SA and Ru NPs, the Ru/C-800 shows attractive HER catalytic activity in acidic and alkaline solutions, with low overpotentials to drive the current density of 10 mA cm and the smallest Tafel slope.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Science and Technology of China, Hefei National Research Center for Physical Sciences at Microscale, jinzhai road, hefei, CHINA.
Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
College of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Putian 351100, Fujian, China.
Blue light will be a promising alternative for photodynamic therapy in psoriasis, but the photosensitizer in vivo remains unexplored. Mesoporous zinc phosphate microparticle (MZP) was synthesized successfully in this study, as evidenced by XPS, XRD, and nitrogen adsorption experiments. Its psoriatic skin-sensitive property was corroborated by SEM and the higher cumulative release rate of that impregnated with curcumin (Cur) and glycyrrhizic acid (GA), namely Cur-GA-MZP, at pH 5.
View Article and Find Full Text PDFGels
November 2024
Department of Chemistry, Helwan University, Ain-Helwan 11795, Egypt.
Environmentally friendly nanoporous gels are tailor-designed and employed in the adsorption of toxic organic pollutants in wastewater. To ensure the maximum adsorption of the contaminant molecules by the gels, molecular modeling techniques were used to evaluate the binding affinity between the toxic organic contaminants such as methylene blue (MB) and Congo red (CR) and various biopolymers. To generate nanopores in the matrix of the polymeric gels, salt crystals were used as porogen.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shanghai University, Chemistry, CHINA.
Electrocatalytic nitrate reduction (NO3RR) is a promising method for pollutant removal and ammonia synthesis and involves the transfer of eight electrons and nine protons. As such, the rational design of catalytic interfaces with enhanced mass transfer is crucial for achieving high ammonia yield rates and Faradaic efficiency (FE). In this work, we incorporated a Cu-bipyridine catalytic interface and fabricated crystalline 2D covalent organic framework films with significantly exposed catalytic sites, leading to improved FE and ammonia yield (FE = 92.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!