Solar dried sewage sludge (SS) conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%). SS characterization reveals that these biosolids could be appropriate materials for gaseous products production. The released gases from SS pyrolysis and gasification present relatively high heating values (up to 9.96 MJ/kg for pyrolysis and 8.02 9.96 MJ/kg for gasification) due to their high contents of H (up to 11 and 7 wt%, resp.) and CH (up to 17 and 5 wt%, resp.). The yields of combustible gases (H and CH) show further increase with pyrolysis. Stoichiometric models of both pyrolysis and gasification reactions were determined based on the global biomass formula, CHONS, in order to assist in the products yields optimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569640 | PMC |
http://dx.doi.org/10.1155/2017/7831470 | DOI Listing |
Waste Manag Res
January 2025
Department of Mechanical Engineering, Invertis University, Bareilly, Uttar Pradesh, India.
Plastics are integral to modern life but present significant environmental and economic challenges due to ineffective waste management systems. This article provides a comprehensive review of global plastic waste management (PWM) strategies, focusing on advancements in processing technologies, policy frameworks and their practical applications. It highlights the role of the World Intellectual Property Organization (WIPO) and regulatory bodies across the United States, Canada, Europe, Britain, India, Japan, Australia and China in fostering sustainable PWM practices.
View Article and Find Full Text PDFInt J Environ Sci Technol (Tehran)
April 2024
Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Corvallis, OR 97333-4902, USA.
Approximately 390,000 abandoned mines across the US pose considerable, pervasive risks to human and environmental health; world-wide the problem is even greater. Lime, organic materials, and other amendments have been used to decrease metal bioavailability (e.g.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Institute of Power Engineering (IPE), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia.
The valorization of shell-based agricultural waste biomass for biofuel production represents a promising approach within the circular bioeconomy. This study employs a bibliometric analysis to investigate research trends and identify key developments in the field from 1997 to 2023, using data from the Web of Science and VOSviewer for scientific mapping. A total of 1333 research articles were examined, revealing notable shifts in research focus: from pyrolysis and biomass energy (1997-2005) to gasification (2006-2014), and more recently, to enzymatic hydrolysis and lignocellulosic biomass gasification (2015-2023).
View Article and Find Full Text PDFBioresour Bioprocess
December 2024
Production Systems Unit, Grasslands and Sustainable Agriculture Group, Natural Resources Institute Finland (Luke), Maaninka, FI-71750, Finland.
Thermal processes are emerging as promising solutions to recovering phosphorus and other nutrient elements from anaerobic digestates. The feasibility of nutrient element recovery depends largely on the fates of nutrient elements and heavy metals during thermal processing. This study assesses the partitioning of macronutrients (N, P, K, Na, Ca and Mg) and heavy metals (Zn, Cu, and Mn) between condensed and gaseous phases during thermal conversion of cattle slurry digestates in gas atmospheres of pyrolysis, combustion, and gasification processes.
View Article and Find Full Text PDFLangmuir
December 2024
National Energy Coal Gasification Technology Research and Development Center, East China University of Science and Technology, P.O. Box 272, Shanghai 200237, P. R. China.
Carbon black from methane pyrolysis for hydrogen is an alternative resource and can be improved for conductive material supplication. Our current work uses an ultrafast Joule heating technique to modify the methane-pyrolyzed carbon black and prepare nanoparticles of electrode material for supercapacitor application, coupled with density functional theory, structural, and electrochemical analyses. Evolution rules of the carbon and pore structures of the modified sample with an increase in temperature reveal good structure improvements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!