Mesoscopic fluorescence molecular tomography (MFMT) is a novel imaging technique that aims at obtaining the 3-D distribution of molecular probes inside biological tissues at depths of a few millimeters. To achieve high resolution, around 100-150μm scale in turbid samples, dense spatial sampling strategies are required. However, a large number of optodes leads to sizable forward and inverse problems that can be challenging to compute efficiently. In this work, we propose a two-step data reduction strategy to accelerate the inverse problem and improve robustness. First, data selection is performed via signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) criteria. Then principal component analysis (PCA) is applied to further reduce the size of the sensitivity matrix. We perform numerical simulations and phantom experiments to validate the effectiveness of the proposed strategy. In both and cases, we are able to significantly improve the quality of MFMT reconstructions while reducing the computation times by close to a factor of two.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560847 | PMC |
http://dx.doi.org/10.1364/BOE.8.003868 | DOI Listing |
Pulm Circ
January 2025
Department of Imaging and Pathology, Biomedical MRI KU Leuven Leuven Belgium.
The pulmonary vasculature plays a pivotal role in the development and progress of chronic lung diseases. Due to limitations of conventional two-dimensional histological methods, the complexity and the detailed anatomy of the lung blood circulation might be overlooked. In this study, we demonstrate the practical use of optical serial block face imaging (SBFI), ex vivo microcomputed tomography (micro-CT), and nondestructive optical tomography for visualization and quantification of the pulmonary circulation's 3D architecture from macro- to micro-structural levels in murine lung samples.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.
Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood.
Methods: In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice.
medRxiv
December 2024
Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX.
Background: Hematoxylin and eosin (H&E) staining is widely considered to be the gold-standard diagnostic tool for histopathology evaluation. However, the fatty nature of some tissue types, such as breast tissue, presents challenges with cryo-sectioning, often resulting in artifacts that can make histopathologic interpretation and correlation with other imaging modalities virtually impossible. We present an optimized on-block H&E staining technique that improves contrast for identifying collagenous stroma during cryo-fluorescence tomography (CFT) sectioning.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
Int J Mol Sci
November 2024
Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan.
Amyloid-β (Aβ) aggregates accumulate in the brains of individuals with Alzheimer's disease and are thought to potentially act as prions, promoting further aggregation. Consequently, the biochemistry of Aβ has emerged as a promising target for Alzheimer's disease. CAC-717, a suspension of calcium bicarbonate mesoscopic structures derived from natural sources, has been shown to inactivate various pathogens, including prions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!