The ability to engineer metamaterials with tunable nonlinear optical properties is crucial for nonlinear optics. Traditionally, metals have been employed to enhance nonlinear optical interactions through field localization. Here, inspired by the electronic properties of materials, we introduce and demonstrate experimentally an asymmetric metal-semiconductor-metal (MSM) metamaterial that exhibits a large and electronically tunable effective second-order optical susceptibility (χ). The induced χ originates from the interaction between the third-order optical susceptibility of the semiconductor (χ) with the engineered internal electric field resulting from the two metals possessing dissimilar work function at its interfaces. We demonstrate a five times larger second-harmonic intensity from the MSM metamaterial, compared to contributions from its constituents with electrically tunable nonlinear coefficient ranging from 2.8 to 15.6 pm/V. Spatial patterning of one of the metals on the semiconductor demonstrates tunable nonlinear diffraction, paving the way for all-optical spatial signal processing with space-invariant and -variant nonlinear impulse response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577114 | PMC |
http://dx.doi.org/10.1038/s41598-017-10304-2 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
The controllable synthesis of epitaxial nanopillar arrays is fundamentally important to the development of advanced electrical and optical devices. However, this fascinating growth method has rarely been applied to the bottom-up synthesis of plasmonic nanostructure arrays (PNAs) with many broad, important, and promising applications in optical sensing, nonlinear optics, surface-enhanced spectroscopies, photothermal conversion, photochemistry, etc. Here, a one-step epitaxial approach to single-crystalline NbTiN (NbTiN) nanopillar arrays based on the layer plus island growth mode is demonstrated by strain engineering.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.
As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.
View Article and Find Full Text PDFSci Rep
December 2024
Department of physics, Faculty of Science, Malayer University, Malayer, Iran.
This study investigates the optical properties of carbon nanotubes (CNTs) and silicene nanotubes (SiNTs) under the influence of external magnetic fields, focusing on their linear and nonlinear optical responses. A tight-binding model is employed to analyze the effects of magnetic fields on the electronic band structure, dipole matrix elements, and various optical susceptibilities of zigzag CNTs and SiNTs. The results reveal significant magnetic field-induced modifications in both linear and nonlinear optical spectra.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75013 Paris, France.
Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China.
Chiral hybrid organic-inorganic metal halides (HOMHs) hold great promise in broad applications ranging from ferroelectrics, spintronics to nonlinear optics, owing to their broken inversion symmetry and tunable chiroptoelectronic properties. Typically, chiral HOMHs are constructed by chiral organic cations and metal anion polyhedra, with the latter regarded as optoelectronic active units. However, the primary design approaches are largely constrained to regulation of general components within structural formula.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!