A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterizing particulate polycyclic aromatic hydrocarbon emissions from diesel vehicles using a portable emissions measurement system. | LitMetric

Characterizing particulate polycyclic aromatic hydrocarbon emissions from diesel vehicles using a portable emissions measurement system.

Sci Rep

School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, P. R. China.

Published: August 2017

Particulate polycyclic aromatic hydrocarbons (p-PAHs) emitted from diesel vehicles are of concern because of their significant health impacts. Laboratory tests, road tunnel and roadside experiments have been conducted to measure p-PAH emissions. While providing valuable information, these methods have limited capabilities of characterizing p-PAH emissions either from individual vehicles or under real-world conditions. We employed a portable emissions measurement (PEMS) to measure real-world emission factors of priority p-PAHs for diesel vehicles representative of an array of emission control technologies. The results indicated over 80% reduction in p-PAH emission factors comparing the China V and China II emission standard groups (113 μg kg vs. 733 μg kg). The toxicity abatement in terms of Benzo[a]pyrene equivalent emissions was substantial because of the large reductions in highly toxic components. By assessing real traffic conditions, the p-PAH emission factors on freeways were lower than on local roads by 52% ± 24%. A significant correlation (R~0.85) between the p-PAH and black carbon emissions was identified with a mass ratio of approximately 1/2000. A literature review indicated that diesel p-PAH emission factors varied widely by engine technology, measurement methods and conditions, and the molecular diagnostic ratio method for source apportionment should be used with great caution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577249PMC
http://dx.doi.org/10.1038/s41598-017-09822-wDOI Listing

Publication Analysis

Top Keywords

emission factors
16
diesel vehicles
12
p-pah emission
12
particulate polycyclic
8
polycyclic aromatic
8
portable emissions
8
emissions measurement
8
p-pah emissions
8
emissions
7
p-pah
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!