Jawed vertebrates, or gnathostomes, have two sets of paired appendages, pectoral and pelvic fins in fishes and fore- and hindlimbs in tetrapods. As for paired limbs, paired fins are purported serial homologues, and the advent of pelvic fins has been hypothesized to have resulted from a duplication of the developmental mechanisms present in the pectoral fins, but re-iterated at a posterior location. Developmental similarity of gene expression between pectoral and pelvic fins has been documented in chondrichthyans, but a detailed morphological description of the progression of paired fin development for this group is still lacking. We studied paired fin development in an ontogenetic series of a phylogenetically basal chondrichthyan, the elephant shark Callorhinchus milii. A strong similarity in the morphology and progression of chondrification between the pectoral and pelvic fins was found, which could be interpretated as further evidence of serial homology in paired fins, that could have arisen by duplication. Furthermore, this high degree of morphological and developmental similarity suggests the presence of morphological and developmental modules within paired fins, as observed in paired limbs. This is the first time morphological and developmental modules are described for the paired fins of chimaeras.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577158PMC
http://dx.doi.org/10.1038/s41598-017-10538-0DOI Listing

Publication Analysis

Top Keywords

paired fins
20
pelvic fins
16
pectoral pelvic
12
morphological developmental
12
paired
10
fins
10
elephant shark
8
paired limbs
8
developmental similarity
8
paired fin
8

Similar Publications

Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins.

View Article and Find Full Text PDF

ScarTrace is a CRISPR/Cas9-based genetic lineage tracing method that allows for uniquely barcoding the DNA of single cells at a target GFP sequence during developing zebrafish embryos. Single cells from barcoded adult zebrafish can be isolated from various tissues (e.g.

View Article and Find Full Text PDF

Background: Batoids possess a unique body plan associated with a benthic lifestyle that includes dorsoventral compression and anteriorly expanded pectoral fins that fuse to the rostrum. The family Myliobatidae, including manta rays and their relatives, exhibit further modifications associated with invasion of the pelagic environment, and the evolution of underwater flight. Notably, the pectoral fins are split into two domains with independent functions that are optimized for feeding and oscillatory locomotion.

View Article and Find Full Text PDF

Maximal athletic performance can be limited by various factors, including restricted respiratory function. These limitations can be mitigated through targeted respiratory muscle training, as supported by numerous studies. However, the full potential of respiratory training in competitive finswimming has not been fully investigated.

View Article and Find Full Text PDF

Paired locomotion appendages are hypothesized to have redeployed the developmental program of median appendages, such as the dorsal and anal fins. Compared with paired fins, and limbs, median appendages remain surprisingly understudied. Here, we report that a dominant zebrafish mutant, smoothback (smb), fails to develop a dorsal fin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!