Actin, a major component of microfilaments, is involved in various eukaryotic cellular functions. Over the past two decades, actin fused with fluorescent protein has been used as a probe to detect the organization and dynamics of the actin cytoskeleton in living eukaryotic cells. It is generally assumed that the expression of fusion protein of fluorescent protein does not disturb the distribution of endogenous actin throughout the cell, and that the distribution of the fusion protein reflects that of endogenous actin. However, we noticed that EGFP-β-actin caused the excessive formation of microfilaments in several mammalian cell lines. To investigate whether the position of the EGFP tag on actin affected the formation of filaments, we constructed an expression vector harboring a β-actin-EGFP gene. In contrast to EGFP-β-actin, cells expressing β-actin-EGFP showed actin filaments in a high background from the monomer actin in cytosol. Additionally, the detergent insoluble assay revealed that the majority of the detergent-insoluble cytoskeleton from cells expressing EGFP-β-actin was recovered in the pellet. Furthermore, we found that the expression of EGFP-β-actin affects the migration of NBT-L2b cells and the mechanical stiffness of U2OS cells. These results indicate that EGFP fused to the N-terminus of actin tend to form excessive actin filaments. In addition, EGFP-actin affects both the cellular morphological and physiological phenotypes as compared to actin-EGFP.Key words: actin, GFP, cytoskeleton and probe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1247/csf.17016 | DOI Listing |
Calcif Tissue Int
January 2025
Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.
This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Arizona - Tucson, Tucson, AZ, USA.
Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Asymptomatic Alzheimer's disease (AsymAD) refers to individuals with preserved cognition but identifiable Alzheimer's disease (AD) brain pathology, including beta-amyloid (Aβ) deposits, neuritic plaques and neurofibrillary tangles upon autopsy. Unlike AD cases, AsymAD exhibits low neuroinflammation and fewer soluble pathological tau species at synaptic levels. However, the link between these observations and the ability to counteract AD pathology is not fully understood.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Background: In several large genome-wide association studies (GWAS), genetic polymorphisms of Abi3 have been identified as a risk factor for late-onset Alzheimer's Disease (LOAD). ABI3 along with ABI1 and ABI2, regulate the formation of the WAVE complex which in turn, regulates actin dynamics. ABI3 is highly expressed in microglia in the brain, however, the function of ABI3 in microglia is relatively unknown.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!