ADP-ribosylation factor-like 4C binding to filamin-A modulates filopodium formation and cell migration.

Mol Biol Cell

Institute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan

Published: November 2017

Changes in cell morphology and the physical forces that occur during migration are generated by a dynamic filamentous actin cytoskeleton. The ADP-ribosylation factor-like 4C (Arl4C) small GTPase acts as a molecular switch to regulate morphological changes and cell migration, although the mechanism by which this occurs remains unclear. Here we report that Arl4C functions with the actin regulator filamin-A (FLNa) to modulate filopodium formation and cell migration. We found that Arl4C interacted with FLNa in a GTP-dependent manner and that FLNa IgG repeat 22 is both required and sufficient for this interaction. We also show that interaction between FLNa and Arl4C is essential for Arl4C-induced filopodium formation and increases the association of FLNa with Cdc42-GEF FGD6, promoting cell division cycle 42 (Cdc42) GTPase activation. Thus our study revealed a novel mechanism, whereby filopodium formation and cell migration are regulated through the Arl4C-FLNa-mediated activation of Cdc42.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662259PMC
http://dx.doi.org/10.1091/mbc.E17-01-0059DOI Listing

Publication Analysis

Top Keywords

filopodium formation
16
cell migration
16
formation cell
12
adp-ribosylation factor-like
8
changes cell
8
cell
6
migration
5
flna
5
factor-like binding
4
binding filamin-a
4

Similar Publications

Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.

View Article and Find Full Text PDF

Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs).

View Article and Find Full Text PDF

Spatial distributions of morphogens provide positional information in developing systems, but how the distributions are established and maintained remains an open problem. Transport by diffusion has been the traditional mechanism, but recent experimental work has shown that cells can also communicate by filopodia-like structures called cytonemes that make direct cell-to-cell contacts. Here we investigate the roles each may play individually in a complex tissue and how they can jointly establish a reliable spatial distribution of a morphogen.

View Article and Find Full Text PDF

NHSL3 controls single and collective cell migration through two distinct mechanisms.

Nat Commun

January 2025

Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.

The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3, the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms.

View Article and Find Full Text PDF

While apoptosis dismantles the cell to enforce immunological silence, pyroptotic cell death provokes inflammation. Little is known of the structural architecture of cells undergoing pyroptosis, and whether pyroptotic corpses are immunogenic. Here we report that inflammasomes trigger the Gasdermin-D- and calcium-dependent eruption of filopodia from the plasma membrane minutes before pyroptotic cell rupture, to crown the resultant corpse with filopodia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!