Self-referencing H-selective electrodes were used to measure extracellular H fluxes from Müller (glial) cells isolated from the tiger salamander retina. A novel chamber enabled stable recordings using H-selective microelectrodes in a self-referencing format using bicarbonate-based buffer solutions. A small basal H flux was observed from the end foot region of quiescent cells bathed in 24 mM bicarbonate-based solutions, and increasing extracellular potassium induced a dose-dependent increase in H flux. Barium at 6 mM also increased H flux. Potassium-induced extracellular acidifications were abolished when bicarbonate was replaced by 1 mM HEPES. The carbonic anhydrase antagonist benzolamide potentiated the potassium-induced extracellular acidification, while 300 μM DIDS, 300 μM SITS, and 30 μM S0859 significantly reduced the response. Potassium-induced extracellular acidifications persisted in solutions lacking extracellular calcium, although potassium-induced changes in intracellular calcium monitored with Oregon Green were abolished. Exchange of external sodium with choline also eliminated the potassium-induced extracellular acidification. Removal of extracellular sodium by itself induced a transient alkalinization, and replacement of sodium induced a transient acidification, both of which were blocked by 300 μM DIDS. Recordings at the apical portion of the cell showed smaller potassium-induced extracellular H fluxes, and removal of the end foot region further decreased the H flux, suggesting that the end foot was the major source of acidifications. These studies demonstrate that self-referencing H-selective electrodes can be used to monitor H fluxes from retinal Müller cells in bicarbonate-based solutions and confirm the presence of a sodium-coupled bicarbonate transporter, the activity of which is largely restricted to the end foot of the cell. The present study uses self-referencing H-selective electrodes for the first time to measure H fluxes from Müller (glial) cells isolated from tiger salamander retina. These studies demonstrate bicarbonate transport as a potent regulator of extracellular levels of acidity around Müller cells and point toward a need for further studies aimed at addressing how such glial cell pH regulatory mechanisms may shape neuronal signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00409.2017DOI Listing

Publication Analysis

Top Keywords

potassium-induced extracellular
20
self-referencing h-selective
16
extracellular fluxes
12
tiger salamander
12
müller glial
12
glial cells
12
h-selective electrodes
12
300 μm
12
extracellular
11
h-selective microelectrodes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!