Effect of M-current modulation on mammalian vestibular responses to transient head motion.

J Neurophysiol

Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska; and

Published: December 2017

The precise role and mechanisms underlying efferent modulation of peripheral vestibular afferent function are not well understood in mammals. Clarifying the details of efferent action may lead to new strategies for clinical management of debilitating disturbances in vestibular and balance function. Recent evidence in turtle indicates that efferent modulation of M-currents is likely one mechanism for modifying afferent discharge. M-currents depend in part on KCNQ potassium conductances (Kv7), which can be adjusted through efferent activation of M1, M3, and/or M5 muscarinic acetylcholine receptors (mAChRs). How KCNQ channels and altered M-currents affect vestibular afferent function in vivo is unclear, and whether such a mechanism operates in mammals is unknown. In this study we used the KCNQ antagonist XE991 and the KCNQ activator retigabine in anesthetized mice to evaluate the effects of M-current modulation on peripheral vestibular responses to transient head motion. At low doses of XE991, responses were modestly enhanced, becoming larger in amplitude and shorter in latency. Higher doses of XE991 produced transient response enhancement, followed by steady-state suppression where latencies and thresholds increased and amplitudes decreased. Retigabine produced opposite effects. Auditory function was also impacted, based on results of companion auditory brain stem response testing. We propose that closure of KCNQ channels transforms vestibular afferent behavior by suppressing responses to transient high-frequency stimuli while simultaneously enhancing responses to sustained low-frequency stimulation. Our results clearly demonstrate that KCNQ channels are critical for normal mammalian vestibular function and suggest that efferent action may utilize these mechanisms to modulate the dynamic characteristics and gain of vestibular afferent responses. The role of calyceal KCNQ channels and associated M-current in normal mammalian vestibular function is unknown. Our results show that calyceal KCNQ channels are critical for normal vestibular function in the intact mammal. The findings provide evidence that efferent modulation of M-currents may act normally to differentially adjust the sensitivity of vestibular neurons to transient and tonic stimulation and that such mechanisms may be targeted to achieve effective clinical management of vestibular disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712666PMC
http://dx.doi.org/10.1152/jn.00384.2017DOI Listing

Publication Analysis

Top Keywords

kcnq channels
20
vestibular afferent
16
vestibular
12
mammalian vestibular
12
responses transient
12
efferent modulation
12
vestibular function
12
m-current modulation
8
vestibular responses
8
transient head
8

Similar Publications

Vestibular afferent neurons develop normally in the absence of quantal/glutamatergic input.

Front Neurol

November 2024

Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.

Article Synopsis
  • - The vestibular nerve, crucial for balance, displays diversity among its neurons, influenced by low-voltage-gated potassium channels, particularly during early development when hair cell activity is significant.
  • - Researchers studied mice without functional glutamate transmission from hair cells to see if their vestibular neurons still exhibited this biophysical diversity, using techniques like immunohistochemistry and patch-clamp electrophysiology.
  • - The results indicated that even without glutamate input, the knockout mice maintained normal vestibular system development and function, showing no balance issues and preserving the diversity of vestibular neuron activity patterns, though some subtle changes were observed in the largest ganglion cells.
View Article and Find Full Text PDF

Advances in the design and development of chemical modulators of the voltage-gated potassium channels K7.4 and K7.5.

Expert Opin Drug Discov

January 2025

Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany.

Article Synopsis
  • * The review discusses the physiological roles of K7.4 and K7.5 channels and recent progress in developing selective modulators that could lead to innovative treatments for hypertension.
  • * Although research has mainly targeted K7.2 and K7.3 channels, there’s a growing need to explore K7.4 and K7.5 for specific, safe, and effective new compounds to enhance blood pressure control in the future.
View Article and Find Full Text PDF

Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia.

View Article and Find Full Text PDF

GABA Receptors and K7 Channels as Targets for GABAergic Regulation of Acetylcholine Release in Frog Neuromuscular Junction.

Neurochem Res

November 2024

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia.

Article Synopsis
  • The study investigated the effects of gamma-aminobutyric acid (GABA) and selective GABAergic ligands on acetylcholine (ACh) release at frog neuromuscular junctions using microelectrode techniques alongside fluorescent and immunohistochemical assays.
  • It was found that GABA significantly reduced ACh release; however, this effect wasn't completely reversed by GABA antagonists, indicating a complex interaction.
  • Additionally, GABA was shown to activate specific K7 potassium channels directly, suggesting that endogenous GABA may play a role in regulating neurotransmitter release during muscle contraction.
View Article and Find Full Text PDF

Background: Abnormal sensory perception, particularly pain insensitivity (PAI), is a typical symptom of autism spectrum disorder (ASD). Despite the role of myelin metabolism in the regulation of pain perception, the mechanisms underlying ASD-related PAI remain unclear.

Methods: The pain-associated gene sphingosine-1-phosphate receptor 1 (S1PR1) was identified in ASD samples through bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!