Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mapping the expression of transcription factors in the mouse spinal cord has identified ten progenitor domains, four of which are cardinal classes of molecularly defined, ventrally located interneurons that are integrated in the locomotor circuitry. This review focuses on the properties of these interneuronal populations and their contribution to hindlimb locomotor central pattern generation. Interneuronal populations are categorized based on their excitatory or inhibitory functions and their axonal projections as predictors of their role in locomotor rhythm generation and coordination. The synaptic connectivity and functions of these interneurons in the locomotor central pattern generators (CPGs) have been assessed by correlating their activity patterns with motor output responses to rhythmogenic neurochemicals and sensory and descending fibers stimulations as well as analyzing kinematic gait patterns in adult mice. The observed complex organization of interneurons in the locomotor CPG circuitry, some with seemingly similar physiological functions, reflects the intricate repertoire associated with mammalian motor control and is consistent with high transcriptional heterogeneity arising from cardinal interneuronal classes. This review discusses insights derived from recent studies to describe innovative approaches and limitations in experimental model systems and to identify missing links in current investigational enterprise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712661 | PMC |
http://dx.doi.org/10.1152/jn.00322.2017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!