Reduced cerebral glucose utilization is found in aged individuals and often is an early sign of neurodegeneration. Here, we show that under glucose deprivation (GD) conditions, decreased expression of presenilin 1 (PS1) results in decreased neuronal survival, whereas increased PS1 increases neuronal survival. Inhibition of γ-secretase also decreases neuronal survival under GD conditions, which suggests the PS1/γ-secretase system protects neurons from GD-induced death. We also show that neuronal levels of the survival protein, phosphoprotein enriched in astrocytes at ∼15 kDa (PEA15), and its mRNA are regulated by PS1/γ-secretase. Furthermore, down-regulation of PEA15 decreases neuronal survival under reduced glucose conditions, whereas exogenous PEA15 increases neuronal survival even in the absence of PS1, which indicates that PEA15 promotes neuronal survival under GD conditions. The absence or reduction of PS1, as well as γ-secretase inhibitors, increases neuronal miR-212, which targets PEA15 mRNA. PS1/γ-secretase activates the transcription factor, cAMP response element-binding protein, regulating miR-212, which targets PEA15 mRNA. Taken together, our data show that under conditions of reduced glucose, the PS1/γ-secretase system decreases neuronal losses by suppressing miR-212 and increasing its target survival factor, PEA15. These observations have implications for mechanisms of neuronal death under conditions of reduced glucose and may provide targets for intervention in neurodegenerative disorders.-Huang, Q., Voloudakis, G., Ren, Y., Yoon, Y., Zhang, E., Kajiwara, Y., Shao, Z., Xuan, Z., Lebedev, D., Georgakopoulos, A., Robakis, N. K. Presenilin1/γ-secretase protects neurons from glucose deprivation-induced death by regulating miR-212 and PEA15.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5731132PMC
http://dx.doi.org/10.1096/fj.201700447RRDOI Listing

Publication Analysis

Top Keywords

neuronal survival
24
protects neurons
12
regulating mir-212
12
increases neuronal
12
decreases neuronal
12
pea15 mrna
12
reduced glucose
12
neuronal
10
pea15
9
presenilin1/γ-secretase protects
8

Similar Publications

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Ketogenesis nutritionally supports brain during bacterial infection in Drosophila.

Brain Behav Immun

January 2025

University of South Bohemia, Faculty of Sciences, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic. Electronic address:

Mounting an immune response is a nutritionally demanding process that requires the systemic redistribution of energy stores towards the immune system. This is facilitated by cytokine-induced insulin resistance, which simultaneously promotes the mobilization of lipids and carbohydrates while limiting their consumption in immune-unrelated processes, such as development, growth, and reproduction. However, this adaptation also restricts the availability of nutrients to vital organs, which must then be sustained by alternative fuels.

View Article and Find Full Text PDF

Associations of blood-based biomarkers of neurodegenerative diseases with mortality, cardio- and cerebrovascular events in persons with chronic coronary syndrome.

Exp Gerontol

January 2025

Cardiovascular Epidemiology of Aging, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany; Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. Electronic address:

Background: In light of growing evidence highlighting interactions between cardiac and brain health, we investigated associations of biomarkers of neurodegenerative diseases with adverse outcomes (all-cause and cardiovascular mortality, major cardiovascular events, and stroke) in persons with chronic coronary syndrome (CCS).

Methods: We used data from a cohort of persons with CCS for whom major adverse events were recorded over a follow-up of 20 years. We measured biomarkers of neurodegenerative diseases in baseline blood samples, using the Single-Molecule Array Technology on a HD-1 Analyzer.

View Article and Find Full Text PDF

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!