A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phosphorylation of mycobacterial phosphodiesterase by eukaryotic-type Ser/Thr kinase controls its two distinct and mutually exclusive functionalities. | LitMetric

Phosphorylation-mediated negative feedback regulation of cAMP levels by phosphodiesterase is well-established in eukaryotic cells. However, such a mechanism remains unexplored in prokaryotes. We report here the involvement of eukaryotic-type Ser/Thr kinases, particularly PknA in trans-phosphorylating phosphodiesterase from (mPDE), that resulted in decreased enzyme turnover rate compared with its unphosphorylated counterpart. To elucidate the role of mPDE phosphorylation in hydrolyzing cellular cAMP, we utilized a phosphodiesterase knock-out strain, Δ, where interference of endogenous eukaryotic-type Ser/Thr kinases could be excluded. Interestingly, the mPDE-complemented Δ strain showed enhanced cAMP levels in the presence of PknA, and this effect was antagonized by PknA-K42N, a kinase-dead variant. Structural analysis of mPDE revealed that four Ser/Thr residues (Ser-20, Thr-22, Thr-182, and Thr-240) were close to the active site, indicating their possible role in phosphorylation-mediated alteration in enzymatic activity. Mutation of these residues one at a time to alanine or a combination of all four (mPDE-4A) affected catalytic activity of mPDE. Moreover, mPDE-4A protein in kinase assays exhibited reduction in its phosphorylation compared with mPDE. In consonance, phosphoproteins obtained after co-expression of PknA with mPDE/S20A/T240A/4A displayed decreased phospho-signal intensities in immunoblotting with anti-phosphoserine/phosphothreonine antibodies. Furthermore, unlike mPDE, phospho-ablated mPDE-T309A protein exhibited impaired cell wall localization in , whereas mPDE-4A behaved similarly as wild type. Taken together, our findings establish mutually exclusive dual functionality of mPDE upon PknA-mediated phosphorylation, where Ser-20/Thr-240 influence enzyme activity and Thr-309 endorses its cell wall localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655513PMC
http://dx.doi.org/10.1074/jbc.M117.784124DOI Listing

Publication Analysis

Top Keywords

eukaryotic-type ser/thr
12
mutually exclusive
8
camp levels
8
ser/thr kinases
8
cell wall
8
wall localization
8
mpde
7
phosphorylation
4
phosphorylation mycobacterial
4
phosphodiesterase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!