Background: The computed tomography (CT) follow-up of indeterminate pulmonary nodules aiming to evaluate the change of the volume and CT value is the common strategy in clinic. The CT dose needs to considered on serious CT scans in addition to the measurement accuracy. The purpose of this study is to quantify the precision of pulmonary nodule volumetric measurement and CT value measurement with various tube currents and reconstruction algorithms in a phantom study with dual-energy CT.
Methods: A chest phantom containing 9 artificial spherical solid nodules with known diameter (D=2.5 mm, 5 mm, 10 mm) and density (-100 HU, 60 HU and 100 HU) was scanned using a 64-row detector CT canner at 120 Kilovolt & various currents (10 mA, 20 mA, 50 mA, 80 mA,100 mA, 150 mA and 350 mA). Raw data were reconstructed with filtered back projection and three levels of adaptive statistical iterative reconstruction algorithm (FBP, ASIR; 30%, 50% and 80%). Automatic volumetric measurements were performed using commercially available software. The relative volume error (RVE) and the absolute attenuation error (AAE) between the software measures and the reference-standard were calculated. Analyses of the variance were performed to evaluate the effect of reconstruction methods, different scan parameters, nodule size and attenuation on the RPE.
Results: The software substantially overestimated the very small (D=2.5 mm) nodule's volume [mean RVE: (100.8%±28%)] and underestimated it attenuation [mean AAE: (-756±80) HU]. The mean RVEs of nodule with diameter as 5 mm and 10 mm were small [(-0.9%±1.1%) vs (0.9%±1.4%)], however, the mean AAEs [(-243±26) HU vs (-129±7) HU)] were large. The ANOVA analysis for repeated measurements showed that different tube current and reconstruction algorithm had no significant effect on the volumetric measurements for nodules with diameter of 5 mm and 10 mm (F=5.60, P=0.10 vs F=11.13, P=0.08), but significant effects on the measurement of CT value (F=34.79, P<0.001 vs F=156.14, P<0.001).
Conclusions: An infinitesimally small errors of volumetric measurement of 5 mm or 10 mm nodule could achieved with very low current and ASIR reconstruction, suggesting a possibility of remarkable radiation dose reductions, while it is not applicable for 5 mm nodule. The attenuation acquired through three dimensional software has large measurement error and can not applied in clinical currently.
.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5973001 | PMC |
http://dx.doi.org/10.3779/j.issn.1009-3419.2017.08.11 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!