Background: Increasing evidence from toxicological and epidemiological studies indicates that the central nervous system is an important target for ambient air pollutants. We have investigated whether long-term inhalation exposure to diesel engine exhaust (DEE), a dominant contributor to particulate air pollution in urban environments, can aggravate Alzheimer's Disease (AD)-like effects in female 5X Familial AD (5XFAD) mice and their wild-type female littermates. Following 3 and 13 weeks exposures to diluted DEE (0.95 mg/m, 6 h/day, 5 days/week) or clean air (controls) behaviour tests were performed and amyloid-β (Aβ) plaque formation, pulmonary histopathology and systemic inflammation were evaluated.

Results: In a string suspension task, assessing for grip strength and motor coordination, 13 weeks exposed 5XFAD mice performed significantly less than the 5XFAD controls. Spatial working memory deficits, assessed by Y-maze and X-maze tasks, were not observed in association with the DEE exposures. Brains of the 3 weeks DEE-exposed 5XFAD mice showed significantly higher cortical Aβ plaque load and higher whole brain homogenate Aβ42 levels than the clean air-exposed 5XFAD littermate controls. After the 13 weeks exposures, with increasing age and progression of the AD-phenotype of the 5XFAD mice, DEE-related differences in amyloid pathology were no longer present. Immunohistochemical evaluation of lungs of the mice revealed no obvious genetic background-related differences in tissue structure, and the DEE exposure did not cause histopathological changes in the mice of both backgrounds. Luminex analysis of plasma cytokines demonstrated absence of sustained systemic inflammation upon DEE exposure.

Conclusions: Inhalation exposure to DEE causes accelerated plaque formation and motor function impairment in 5XFAD transgenic mice. Our study provides further support that the brain is a relevant target for the effects of inhaled DEE and suggests that long-term exposure to this ubiquitous air pollution mixture may promote the development of Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577845PMC
http://dx.doi.org/10.1186/s12989-017-0213-5DOI Listing

Publication Analysis

Top Keywords

5xfad mice
16
plaque formation
12
alzheimer's disease
12
diesel engine
8
engine exhaust
8
inhalation exposure
8
air pollution
8
13 weeks exposures
8
aβ plaque
8
systemic inflammation
8

Similar Publications

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

Modulation of glymphatic system by visual circuit activation alleviates memory impairment and apathy in a mouse model of Alzheimer's disease.

Nat Commun

January 2025

Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Alzheimer's disease is characterized by progressive amyloid deposition and cognitive decline, yet the pathological mechanisms and treatments remain elusive. Here we report the therapeutic potential of low-intensity 40 hertz blue light exposure in a 5xFAD mouse model of Alzheimer's disease. Our findings reveal that light treatment prevents memory decline in 4-month-old 5xFAD mice and motivation loss in 14-month-old 5xFAD mice, accompanied by restoration of glial water channel aquaporin-4 polarity, improved brain drainage efficiency, and a reduction in hippocampal lipid accumulation.

View Article and Find Full Text PDF

Cathepsin D (Ctsd) has emerged as a promising therapeutic target for Alzheimer's disease (AD) due to its role in degrading intracellular amyloid beta (Aβ). Enhancing Ctsd activity could reduce Aβ42 accumulation and restore the Aβ42/40 ratio, offering a potential AD treatment strategy. This study explored Ctsd demethylation in AD mouse models using dCas9-Tet1-mediated epigenome editing.

View Article and Find Full Text PDF

Demyelination-derived lysophosphatidylserine promotes microglial dysfunction and neuropathology in a mouse model of Alzheimer's disease.

Cell Mol Immunol

January 2025

Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.

Article Synopsis
  • Microglia dysfunction and neuroinflammation are significant contributors to Alzheimer's disease, but their underlying mechanisms are not fully understood.
  • Demyelination in early Alzheimer's leads to increased levels of lysophosphatidylserine (LysoPS) in myelin debris, which activates the GPR34 receptor, promoting neuroinflammation and cognitive decline.
  • Reducing LysoPS or inhibiting GPR34 can enhance microglial function, decrease amyloid-beta (Aβ) accumulation, and improve memory in mouse models, suggesting targeting the LysoPS-GPR34 pathway could be a valuable therapeutic approach for Alzheimer's.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!