As a result of the shallow depth of focus of the optical imaging system, the use of standard filtered back projection in optical projection tomography causes space-variant tangential blurring that increases with the distance to the rotation axis. We present a novel optical tomographic image reconstruction technique that incorporates the point spread function of the imaging lens in an iterative reconstruction. The technique is demonstrated using numerical simulations, tested on experimental optical projection tomography data of single fluorescent beads, and applied to high-resolution emission optical projection tomography imaging of an entire zebrafish larva. Compared to filtered back projection our results show greatly reduced radial and tangential blurring over the entire [Formula: see text] mm field of view, and a significantly improved signal to noise ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/aa8945 | DOI Listing |
Cureus
December 2024
Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Kuantan, MYS.
In abdominal X-ray examinations, radiosensitive organs such as the gonads within or near the imaging region are at risk of radiation exposure. Minimizing the dose to these organs is crucial to reducing unnecessary radiation. This study utilized optically stimulated luminescence dosimeters (OSLDs) to measure the radiation dose to the male gonads at varying kilovoltage peak (kVp) settings while keeping the milliampere-seconds (mAs) constant across different radiographic projections.
View Article and Find Full Text PDFHow specification mechanisms that generate neural diversity translate into specific neuronal targeting, connectivity, and function in the adult brain is not understood. In the medulla region of the optic lobe, neural progenitors generate different neurons in a fixed order by sequentially expressing a series of temporal transcription factors as they age. Then, Notch signaling in intermediate progenitors further diversifies neuronal progeny.
View Article and Find Full Text PDFTissue Cell
January 2025
Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain. Electronic address:
The mammalian olfactory system is responsible for processing environmental chemical stimuli and comprises several structures, including the olfactory epithelium, olfactory bulb, olfactory peduncle (OP), and olfactory cortices. Despite the critical role played by the OP in the conduction of olfactory information, it has remained understudied. In this work, optical, confocal, and electron microscopy were employed to examine the anatomy, histology, and ultrastructure of six human OP specimens (ages 37-84 years).
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
January 2025
Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. Electronic address:
Diabetic macular edema (DME) stands as a leading cause for vision loss among the working-age population. Anti-vascular endothelial growth factor (VEGF) agents are currently recognized as the first-line treatment. However, a significant portion of patients remain insensitive to anti-VEGF, resulting in sustained visual impairment.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.
Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood.
Methods: In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!